AI: Leadership & Strategy
AI: Data & Governance
AI: Use cases
Team development
Misc.
Comments
India ranks 4th globally in the AI Index (figure 1) with a score of 25.54, placing it behind the US (1st, 70.06) and China (2nd, 40.17). However, a comparative analysis of India's AI strengths and weaknesses (figure 2) reveals that there are still major concerns and problems for her to solve to be able to compete with global AI leaders.
Strengths for India
Weaknesses for India
Conclusion India shows potential, particularly in leveraging its diversity, policy focus, and growing educational base for AI. However, critical gaps in infrastructure and responsible AI practices, along with translating R&D into economic gains, are major hurdles compared to global leaders like the US and China. AI Strategy & Training for Executives The gap between India's AI potential and its current infrastructural/ethical maturity requires astute leadership. The winners will be those who can strategically:
Leading effectively in the age of AI, particularly Generative AI, requires specific strategic understanding. If you would like to equip your executive team with the knowledge to make confident decisions, manage risks, and drive successful AI integration, reach out for custom AI training proposals - [email protected]. Related blogs Introduction: From Buzzword to Bottom Line
Generative AI (GenAI) is no longer a futuristic concept whispered in tech circles; it's a powerful force reshaping industries and fundamentally altering how businesses operate. GenAI has decisively moved "from buzzword to bottom line." Early adopters are reporting significant productivity gains – customer service teams slashing response times, marketing generating months of content in days, engineering accelerating coding, and back offices becoming vastly more efficient. Some top performers even attribute over 10% of their earnings to GenAI implementations. The potential is undeniable. But harnessing this potential requires more than just plugging into the latest Large Language Model (LLM). Building sustainable, trusted, and value-generating AI capabilities within an enterprise is a complex journey. It demands a clear strategy, robust foundations, and crucially, a workforce equipped with the right skills and understanding. Without addressing the human element – the knowledge gap across all levels of the organisation – even the most sophisticated AI tools will fail to deliver on their promise. This guide, drawing insights from strategic reports and real-world experience, outlines the key stages of developing a successful enterprise GenAI strategy, emphasizing why targeted corporate training is not just beneficial, but essential at every step. The Winning Formula: A Methodical, Phased Approach The path to success is methodical: "identify high-impact use cases, build strong foundations, and scale what works." This journey typically unfolds across four key stages, underpinned by an iterative cycle of improvement. Stage 1: Develop Your AI Strategy – Laying the Foundation This initial phase (often the first 1-3 months) is about establishing the fundamental framework. Rushing this stage leads to common failure points: misaligned governance, crippling technical debt, and critical talent gaps. Success requires a three-dimensional focus: People, Process, and Technology. 1. People Executive Alignment & Sponsorship: Getting buy-in isn't enough. Leaders need a strategic vision tying AI to clear business outcomes (productivity, growth). They must understand AI's potential and limitations to provide realistic guidance. Training Need: Executive AI Briefings are crucial here, demystifying GenAI, outlining strategic opportunities/risks, and fostering informed sponsorship. Governance & Oversight: Establishing an AI review board, ethical guidelines, and transparent evaluation processes cannot be an afterthought. Trust is built on responsible foundations. Training Need: Governance teams need specialized training on AI ethics, bias detection, model evaluation principles, and regulatory compliance implications. 2. Process Pilot Selection: Avoid tackling the biggest challenges first. Identify pilots offering demonstrable value quickly, with enthusiastic sponsors, available data, and manageable compliance. Focus on addressing real friction points. Training Need: Business leaders and managers need training to identify high-potential, LLM-suitable use cases within their domains and understand the criteria for a successful pilot. Scaling Framework: Define clear "graduation criteria" (performance thresholds, operational readiness, risk management) for moving pilots to broader deployment. Training Need: Project managers and strategists need skills in defining AI-specific KPIs and operational readiness checks. 3. Technology Technical Foundation: Evaluate existing infrastructure, data architecture maturity, integration capabilities, and tooling through an "AI lens." Training Need: IT and data teams require upskilling to understand the specific infrastructural demands of AI development and deployment (e.g., GPUs, vector databases, MLOps). Data Governance: High-quality, accessible, compliant data is non-negotiable. This requires sophisticated governance and data quality management. Training Need: Data professionals need advanced training on data pipelines, quality checks, and governance frameworks specifically for AI. Stage 2: Create Business Value – Identifying and Proving Potential Once the strategy is outlined (Months 4-6, typically), the focus shifts to identifying specific use cases and demonstrating value through well-chosen pilots. Identifying Pilot Use Cases: The best initial projects leverage core LLM strengths (unstructured data processing, content classification/generation) but carry low security or operational risk. They need abundant, accessible data and measurable success metrics tied to business indicators (reduced processing time, improved accuracy, etc.). Defining Success Criteria: Move beyond vague goals. Success metrics must be Specific, Measurable, Aligned with business objectives, and Time-bound (SMART). You can find excellent examples across use cases like ticket routing, content moderation, chatbots, code generation, and data analysis. Choosing the Right Model: Consider the trade-offs between intelligence, speed, cost, and context window size based on the specific task. Training Need: Teams selecting models need foundational training on understanding these trade-offs and how different models suit different business needs and budgets. Stage 3: Build for Production – From Concept to Reality This stage involves turning the chosen use case and model into a reliable, scalable application. Prompt Engineering: It is strongly advisable to invest in prompt engineering as a key skill. Well-crafted prompts can significantly improve model capabilities, often more quickly and cost-effectively than fine-tuning. This involves structuring prompts effectively (task, role, background data, rules, examples, formatting). Training Need: Dedicated prompt engineering training is crucial for technical teams and even power users to maximize model performance without resorting to costly fine-tuning prematurely. Evaluation: Rigorous evaluation is key to iteration. It is recommended to perform detailed, specific, automatable tests (potentially using LLMs as judges), run frequently. Side-by-side comparisons, quality grading, and prompt versioning are vital. Training Need: Data scientists and ML engineers require training on robust evaluation methodologies, understanding metrics, and potentially leveraging proprietary tools Optimization: Techniques like Few-Shot examples (providing examples in the prompt) and Chain of Thought (CoT) prompting (letting the model "think step-by-step") can significantly improve output quality and accuracy. Training Need: Applying these optimization techniques effectively requires specific training for those building the AI applications. Stage 4: Deploy – Scaling and Operationalizing Once an application runs smoothly end-to-end, it's time for production deployment (Months 13+ for broad adoption). Progressive Rollout: Don't replace old systems immediately. Use progressive rollouts, A/B testing, and design user-friendly human feedback loops. LLMOps (Deploying with LLM Ops): Operationalizing LLMs requires specific practices (LLMOps), a subset of MLOps. There are five best practices: 1. Robust Monitoring & Observability: Track basic metrics (latency, errors) and LLM-specific ones (token usage, output quality). 2. Systematic Prompt Management: Version control, testing, documentation for prompts. 3. Security & Compliance by Design: Access controls, content filtering, data privacy measures from the start. 4. Scalable Infrastructure & Cost Management: Balance scalability with cost efficiency (caching, right-sizing models, token optimisation). 5. Continuous Quality Assurance: Regular testing, hallucination monitoring, user feedback loops. Training Need: Dedicated MLOps / LLMOps training* is essential for DevOps and ML engineering teams responsible for deploying and maintaining these systems reliably and cost-effectively. The Undeniable Need for Corporate AI Training Across All Levels A recurring theme throughout industry reports (like BCG citing talent shortage as the #1 challenge), is the critical need for AI competencies at every level of the organisation: 1. C-Suite Executives: Need strategic vision. They require training focused on understanding AI's potential and risks, identifying strategic opportunities, asking the right questions, and championing responsible AI governance.** Generic AI knowledge isn't enough; they need tailored insights relevant to their industry and business goals. 2. Managers & Team Leads: Need skills to guide transformation. Training should focus on identifying practical use cases within their teams, managing AI implementation projects, interpreting AI performance metrics, leading change management, and fostering collaboration between technical and non-technical staff. 3. Individual Contributors: Need practical tool proficiency. Training should equip them to use specific AI tools effectively and safely, understand basic prompt techniques, provide valuable feedback for model improvement, and be aware of ethical considerations and data privacy. 4. Technical Teams (Engineers, Data Scientists, IT): Need deep, specialized skills. This requires ongoing, in-depth training on advanced prompt engineering, fine-tuning techniques, LLMOps, model evaluation methodologies, AI security best practices, and integrating AI with existing systems. Without this multi-layered training approach, organizations risk:
Partnering for Success: Your AI Training Journey Building a successful Generative AI strategy is a marathon, not a sprint. It requires a clear roadmap, robust technology, strong governance, and, most importantly, empowered people. Generic, off-the-shelf training often falls short for the specific needs of enterprise transformation. As an expert in AI and corporate training, I help organizations navigate this complex landscape. From executive briefings that shape strategic vision to hands-on workshops that build practical skills for technical teams and business users, tailored training programs are designed to accelerate your AI adoption journey responsibly and effectively. Ready to move beyond the buzzword and build real, trusted AI capabilities? Let's discuss how targeted training can become the cornerstone of your enterprise Generative AI strategy. Please feel free to Connect to discuss your organisation's AI Training requirements. The Unfortunate Reality of India’s AI efforts - #2 𝐢𝐧 𝐓𝐚𝐥𝐞𝐧𝐭 𝐛𝐮𝐭 𝐨𝐧𝐥𝐲 #68 𝐢𝐧 𝐢𝐧𝐟𝐫𝐚𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞.
👉 While we should rightly celebrate our immense AI talent pool, we will undoubtedly fail to hold on to them if we do not invest in providing the appropriate infrastructure, operating environment, commercial ecosystem and a conducive culture for their professional growth in India. 👉 While US & China are the undisputed leaders in national-level AI infrastructure, it is perhaps not surprising to note that Singapore ranks #3 in AI infrastructure (and #6 in AI Talent). With a sustained long-term strategy and focus on developing its ‘people’ as their only natural resource, Singapore has consistently pioneered and led the way in harnessing its limited human resources to support its industry, society and economy. 👉 We can take a page out of Singapore’s AI playbook (e.g. AI Singapore) to scale our own AI infrastructure, R&D, commercial and government strategies and support our world-class talent in performing cutting-edge AI R&D in India. 👉 IndiaAI and other government organisations as well as private corporations, therefore, have an enormous challenge at their hands to develop India's AI capabilities at a global scale (more to come on this topic). Source of national AI rankings: The Global AI Index, 2024 What is India’s greatest asset in the global AI ecosystem? 𝐓𝐚𝐥𝐞𝐧𝐭
𝐈𝐧𝐝𝐢𝐚 𝐫𝐚𝐧𝐤𝐬 #2 𝐢𝐧 𝐭𝐞𝐫𝐦𝐬 𝐨𝐟 𝐀𝐈 𝐓𝐚𝐥𝐞𝐧𝐭, 𝐨𝐧𝐥𝐲 𝐛𝐞𝐡𝐢𝐧𝐝 𝐭𝐡𝐞 𝐔𝐒𝐀, while being ranked #10 overall (The Global AI Index, 2024). Let’s dive deeper - 1️⃣ Global optimism in India’s Talent “𝘐𝘯𝘥𝘪𝘢 𝘩𝘢𝘴 𝘢𝘭𝘭 𝘵𝘩𝘦 𝘪𝘯𝘨𝘳𝘦𝘥𝘪𝘦𝘯𝘵𝘴 𝘵𝘰 𝘭𝘦𝘢𝘥 𝘵𝘩𝘦 𝘈𝘐 𝘳𝘦𝘷𝘰𝘭𝘶𝘵𝘪𝘰𝘯” - Jensen Huang, NVIDIA - “𝘐𝘯𝘥𝘪𝘢 𝘤𝘢𝘯 𝘭𝘦𝘢𝘥 𝘵𝘩𝘦 𝘈𝘐 𝘧𝘳𝘰𝘯𝘵𝘪𝘦𝘳” - Sundar Pichai, Google - “𝘐𝘯𝘥𝘪𝘢 𝘩𝘢𝘴 𝘴𝘰 𝘮𝘢𝘯𝘺 𝘵𝘢𝘭𝘦𝘯𝘵𝘦𝘥 𝘱𝘦𝘰𝘱𝘭𝘦, 𝘴𝘰 𝘮𝘢𝘯𝘺 𝘨𝘳𝘦𝘢𝘵 𝘤𝘰𝘮𝘱𝘢𝘯𝘪𝘦𝘴—𝘪𝘵 𝘩𝘢𝘴 𝘵𝘩𝘦 𝘳𝘦𝘴𝘰𝘶𝘳𝘤𝘦𝘴 𝘵𝘰 𝘣𝘰𝘵𝘩 𝘵𝘳𝘢𝘪𝘯 𝘧𝘰𝘶𝘯𝘥𝘢𝘵𝘪𝘰𝘯 𝘮𝘰𝘥𝘦𝘭𝘴 𝘢𝘯𝘥 𝘣𝘶𝘪𝘭𝘥 𝘢𝘱𝘱𝘭𝘪𝘤𝘢𝘵𝘪𝘰𝘯𝘴” - Andrew Ng, DeepLearning.ai India's young, capable and energetic workforce, gives us an edge that is partly due to our sheer demographic weight but also thanks to our strong network of higher education STEM institutions, and our global position as an IT outsourcing powerhouse. 2️⃣ AI Developers vs. Scientists We are particularly strong in our AI developer talent who are proficient in building generativeAI and LLM powered applications. However, in terms of highly specialised AI research scientists, India ranks only 24 (The Global AI Index, 2024). 3️⃣ AI Research Talent Churn Our AI Research Talent in particular is prone to churn. Due to the lack of a supporting infrastructure, R&D culture, commercial ecosystem, mentorship etc., a significant proportion of our talent opts out of AI research by: - Moving to industry to work on AI applications - Migrating to USA etc. for better AI research opportunities 4️⃣ Growing and Retaining India’s AI Talent In order to maintain our competitive edge in AI Talent, we need to continue investing in skill development. We not only need AI-native talent who can conduct research and build AI applications, but we also need our non-technical workforce to be adept in AI skills and tools that are critical for driving efficiency and productivity at work. This will not only result in economic gains for the country but also pave the way for future success - “𝘕𝘦𝘦𝘥 𝘵𝘰 𝘴𝘬𝘪𝘭𝘭, 𝘳𝘦-𝘴𝘬𝘪𝘭𝘭 𝘱𝘦𝘰𝘱𝘭𝘦 𝘧𝘰𝘳 𝘈𝘐-𝘥𝘳𝘪𝘷𝘦𝘯 𝘧𝘶𝘵𝘶𝘳𝘦” - 𝐏𝐌 𝐌𝐨𝐝𝐢 at AI Action Summit, Paris 2025 5️⃣ Conclusions I am personally optimistic about India’s AI potential only because of her Talent. My belief is substantiated by studies which show that India ranks 1st globally in AI skill penetration (Stanford AI Index 2024). Additionally, India also leads in AI skill penetration for Women with a penetration rate of 1.7. If we take the right steps in supporting and nurturing our talent and provide them with the necessary resources, infrastructure, ecosystem, mentorship, and foster a culture of meritocracy and research, we will not only be regarded as leaders in AI Talent but also as global leaders in AI implementation, innovation, and R&D. What is India’s strength in AI? 𝗕𝘂𝗶𝗹𝗱𝗶𝗻𝗴 𝗔𝗽𝗽𝗹𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀
India may be lagging behind other countries in terms of fundamental AI research but it punches above its weight when it comes to building AI applications - 1️⃣ Greater adoption of Application models vs. Foundational LLMs The number of downloads of models (on Hugging Face) focused on Indic use cases in the last month from today show up to a staggering ~90X greater adoption of smaller application models (largely developed by AI4Bhārat) vs. foundational LLMs (based on Sarvam's Sarvam-1 and Krutrim's Krutrim-2-instruct). These are the use cases for each of the Application models: - indictrans2-indic-en-1B: translation from 22 Indian languages to English - indic-bert: language model and embeddings for 12 Indian languages - indicBERtv2-MLM-only: multilingual language model for 23 languages - indictrans2-en-indic-1B: translation from English to 22 Indian languages - indic-sentence-bert-nli: sentence similarity across 10 Indian languages 👉 The application models are typically “small” models ranging from ~300M to ~1B parameters in size vs. the foundational LLMs that are 2 to 12B parameters in size. This also indicates that for solving India-specific use cases, we do not necessarily need “large” models; and the development of small, fine-tuned models on top of leading open-source LLMs from global companies is a good strategy to solve for niche domestic use cases. 2️⃣ India publishes ~2x more at Application vs. Theoretical AI Conferences Of the top 10 AI conferences, India publishes ~2 times more papers in conferences like AAAI and EMNLP that are more application focused vs. the more theory focused conferences like NeurIPS, ICML and ICLR (source: Mahajan, Bhasin & Aggarwal, 2024). 3️⃣ AI4Bharat's significant contribution to India's R&D capabilities The team at AI4Bhārat in collaboration with Microsoft India, Indian Institute of Technology, Madras, EkStep Foundation and others has done a stellar job in collecting, curating and processing local language datasets to unlock significant value for both public and private sector organisations. By using these datasets to fine-tune Transformer-based models like BERT & ALBERT, they have created models that often outperform models from global companies on niche NLP use cases. Additionally, this work has led to the formation of Sarvam as a venture-backed startup focused on the commercialisation of this research. 4️⃣ Growth of India's AI Startups The rise of generativeAI startups from India that are developing on top of the global foundational LLMs further highlights our strength in building AI applications. These startups are not only solving domestic use cases but also catering to global markets. 5️⃣ Conclusions India’s prowess in building AI applications is highly commendable. One way to make our mark on the global AI ecosystem is by standing on the shoulder of giants to build impactful products. Can India build its own foundational LLMs? Yes
But who is using them? How much is their adoption? To find answers to these questions, I’ve sourced publicly available data from various sources as below: 1️⃣ Number of Downloads on Hugging Face Hugging Face is the de-facto platform for developers to download AI models and datasets. I’ve considered the number of downloads (as a proxy for usage and adoption) of leading, open-source LLMs from USA (from Meta), China (from DeepSeek AI & Alibaba Cloud), and India (from Sarvam & Krutrim, as the two most well capitalized Generative AI startups). The data shows that in the same time period of the last one month from today: - US: LLama’s 3.2-1B & 3.1-8B-instruct were downloaded ~11M & ~6M times - China: DeepSeek-R1 & Qwen2-VL-7B-instruct were downloaded ~4M & 1.5M times - India: Sarvam-1 & Krutrim-2-instruct (built on top of Mistral-NeMo 12B) were downloaded ~5k and ~1k times 👉 These numbers show that the adoption of our leading LLMs is 3 to 4 orders of magnitude less than the most popular LLMs from China and USA respectively. The absolute numbers might be slightly different as these LLMs are also available as APIs, on cloud platforms etc. but the overall trend may not be that different. 2️⃣ Number of forks of Github repositories Forking of Github repos represents a stronger sign of adoption by the developer community, and here also the picture is similar: - meta-llama has been forked ~9700 times - DeepSeek-v3 has been forked ~13800 times - DeepSeek-R1 has been forked ~10000 times - Qwen-VL has been forked 400 times - Krutrim-2-12B has been forked 6 times - Sarvam doesn’t have a dedicated repo for Sarvam-1 3️⃣ Listing in LLM Marketplaces Customer-centric LLM marketplaces like AWS BedRock also provide an indication of customer usage & adoption. While Meta’s LLama and DeepSeek-R1 models are supported, none of India’s LLMs are available. 4️⃣ Support from LLM inference engines LLM Inference engines like vLLM also provide signals about LLM adoption for production use cases. vllm currently supports Llama and Qwen models but again no Indian LLMs yet. 5️⃣ Conclusions Overall, the analysis indicates that Indian LLMs do not currently receive significant user interest and therefore their impact is far less than top, global LLMs. Our LLMs likely have a competitive advantage for domestic use cases focused on speech and language e.g. translation, document analysis, speech recognition etc. The market size of our domestic use cases may not be big enough to justify investment by global companies, but it clearly represents an area where indigenous LLM builders can distinguish themselves. Following my previous post on the poor trajectory of India’s AI research record at top AI conferences, these data further show that we are far from the cutting-edge of AI research and a lot of work needs to be done to raise the bar in terms of global adoption and impact. Unfortunately No.
While India's contribution to AI papers at top AI conferences (including NeurIPS, ICLR, ICML, CVPR, EMNLP etc.) has remained flat over the last 10 years, China's contribution to the AI field, on the other hand, has dramatically increased and caught up with the USA during the same time period (Mahajan, Bhasin & Aggarwal, 2024). This period in the field of AI was marked by numerous innovations in Deep Learning for images, text, audio; Transfer Learning, Synthetic Data, Transformers to name a few. We witnessed the emergence of groundbreaking models such as BERT, GPT-1/2/3, Stable Diffusion etc., which eventually led to the development of ChatGPT and the advent of the current era of LLMs and GenerativeAI. India has missed the boat during this period and failed to proactively increase investment in R&D, infrastructure and capacity building for AI (our R&D budget is only ~0.65% of GDP vs. ~2.4% for China and ~3.5% for USA) as well as retain home-grown talent. There is no straightforward solution to India's AI R&D challenges. While are early signs of progress (e.g. AI4Bhārat, IndiaAI, BHASHINI), in order to truly turn the page and compete at the top of the global AI hierarchy, we need to execute robust AI investment, innovation and implementation strategies. (More to come on this topic) Introduction
The AI revolution is no longer a distant future—it’s reshaping industries today. By 2025, the global AI market is projected to reach $190 billion (Statista, 2023), with generative AI tools like ChatGPT and Midjourney contributing an estimated $4.4 trillion annually to the global economy (McKinsey, 2023). For tech professionals and organizations, this rapid evolution presents unparalleled opportunities but also demands strategic navigation. As an AI expert with a decade of experience working at Big Tech companies and scaling AI-first startups, I’ve witnessed firsthand the transformative power of well-executed AI strategies. This blog post distills actionable insights for:
Let’s explore how to turn AI’s potential into measurable results. Breaking into AI – A Blueprint for Early-Career Professionals The Skills That Matter in 2024 The AI job market is evolving beyond traditional coding expertise. While proficiency in Python and TensorFlow remains valuable, employers now prioritize three critical competencies: 1. Prompt Engineering: With generative AI tools like GPT4/o/o1-/o-3, Deepseek-R1, Claude Sonnet 3.5 etc., the ability to craft precise prompts is becoming a baseline skill. For example, a marketing analyst might use prompts like, “Generate 10 customer personas for a fintech app targeting Gen Z, including pain points and preferred channels.” 2. AI Literacy: 85% of hiring managers now require familiarity with responsible AI frameworks ([Deloitte, 2023](https://www2.deloitte.com)). This includes understanding bias mitigation and compliance with regulations like the EU AI Act. 3. Cross-Functional Collaboration: AI projects fail when technical teams operate in silos. Professionals who can translate business goals into technical requirements—and vice versa—are indispensable. Actionable Steps to Launch Your AI Career 1. Develop a "T-shaped" Skill Profile: Deepen expertise in machine learning (the vertical bar of the “T”) while broadening knowledge of business applications. For instance, learn how recommendation systems impact e-commerce conversion rates. 2. Build an AI Portfolio: Document projects that solve real-world problems. A compelling example: fine-tuning Meta’s Llama 2 model to summarize legal contracts, then deploying it via Hugging Face’s Inference API. 3. Leverage Micro-Credentials: Google’s [Generative AI Learning Path](https://cloud.google.com/blog/topics/training-certifications/new-generative-ai-training) and DeepLearning.AI’s short courses provide industry-recognized certifications that demonstrate proactive learning. From Individual Contributor to AI Leader – Strategies for Mid/Senior Professionals The Four Pillars of Effective AI Leadership Transitioning from technical execution to strategic leadership requires mastering these core areas: 1. Strategic Vision Alignment: Successful AI initiatives directly tie to organizational objectives. For example, a retail company might set the OKR: “Reduce supply chain forecasting errors by 40% using time-series AI models by Q3 2024.” 2. Risk Mitigation Frameworks: Generative AI models like GPT-4 can hallucinate inaccurate outputs. Leaders implement guardrails such as IBM’s [AI Ethics Toolkit](https://www.ibm.com), which includes bias detection algorithms and human-in-the-loop validation processes. 3. Stakeholder Buy-In: Use RACI matrices (Responsible, Accountable, Consulted, Informed) to clarify roles. For instance, when deploying a customer service chatbot, legal teams must be “Consulted” on compliance, while CX leads are “Accountable” for user satisfaction metrics. 4. ROI Measurement: Track metrics like inference latency (time to generate predictions) and model drift (performance degradation over time). One fintech client achieved a 41% improvement in fraud detection accuracy by combining XGBoost with transformer models, while reducing false positives by 22%. Building an AI-First Organization – A Playbook for Startups The AI Strategy Canvas 1. Problem Identification: Focus on high-impact “hair-on-fire” pain points. A logistics startup automated customs documentation—a manual 6-hour process—into a 2-minute task using GPT-4 and OCR. 2. Tool Selection Matrix: Compare open-source (e.g., Hugging Face’s LLMs) vs. enterprise solutions (Azure OpenAI). Key factors: data privacy requirements, scalability, and in-house technical maturity. 3. Implementation Phases: - Pilot (1-3 Months): Test viability with an 80/20 prototype. Example: A SaaS company used a low-code platform to build a churn prediction model with 82% accuracy using historical CRM data. - Scale (6-12 Months): Integrate models into CI/CD pipelines. One e-commerce client reduced deployment time from 14 days to 4 hours using AWS SageMaker. - Optimize (Ongoing): Conduct A/B tests between model versions. A/B testing showed that a hybrid CNN/Transformer model improved image recognition accuracy by 19% over pure CNN architectures. Generative AI in Action – Enterprise Case Studies Use Case 1: HR Transformation at a Fortune 500 Company Challenge: 45-day hiring cycles caused top candidates to accept competing offers. Solution: - GPT-4 drafted job descriptions optimized for DEI compliance - LangChain automated interview scoring using rubric-based grading - Custom embeddings matched candidates to team culture profiles Result: 33% faster hiring, 28% improvement in 12-month employee retention. Use Case 2: Supply Chain Optimization for E-Commerce Challenge: $2.3M annual loss from overstocked perishable goods. Solution: - Prophet time-series models forecasted regional demand - Fine-tuned LLMs analyzed social media trends for real-time demand sensing Result: 27% reduction in waste, 15% increase in fulfillment speed. Avoiding Common AI Adoption Pitfalls Mistake 1: Chasing Trends Without Alignment Example: A startup invested $500K in a metaverse AI chatbot despite having no metaverse strategy. Solution: Use a weighted decision matrix to evaluate tools against KPIs. Weight factors like ROI potential (30%), technical feasibility (25%), and strategic alignment (45%). Mistake 2: Ignoring Data Readiness Example: A bank’s customer churn model failed due to incomplete historical data. Solution: Conduct a data audit using frameworks like [O’Reilly’s Data Readiness Assessment](https://www.oreilly.com). Prioritize data labeling and governance. Mistake 3: Overlooking Change Management Example: A manufacturer’s warehouse staff rejected inventory robots. Solution: Apply the ADKAR framework (Awareness, Desire, Knowledge, Ability, Reinforcement). Trained “AI ambassadors” from frontline teams increased adoption by 63%. Conclusion The AI revolution rewards those who blend technical mastery with strategic execution. For professionals, this means evolving from coders to translators of business value. For organizations, success lies in treating AI as a core competency—not a buzzword. Three Principles for Sustained Success: 1. Learn Systematically: Dedicate 5 hours/week to AI upskilling through curated resources. 2. Experiment Fearlessly: Use sandbox environments to test tools like Anthropic’s Claude or Stability AI’s SDXL. 3. Collaborate Across Silos: Bridge the gap between technical teams (“What’s possible?”) and executives (“What’s profitable?”). As artificial intelligence continues to reshape industries, the landscape of AI talent recruitment has evolved significantly. Based on my recent discussions with technical recruiters and industry leaders, I want to share comprehensive insights into the current state of AI recruitment, team structures, and what both companies and candidates should know about this rapidly evolving field.
The Modern AI Team Structure Today's AI teams are increasingly complex, organized along two primary dimensions: workflow-based and layer-based structures. This complexity reflects the maturing of AI as a field and the specialization required for different aspects of AI development and deployment. Core Team Components The modern AI team typically consists of three major divisions:
A crucial addition to this structure has been the emergence of AI-focused product managers who bridge the gap between technical capabilities and business requirements. Their role in identifying viable use cases and ensuring business alignment has become increasingly critical. Technical Interview Evolution The technical interview process for AI roles has become more sophisticated, reflecting the field's complexity. While traditional coding and system design rounds remain important, machine learning-specific assessments have become crucial:
For research positions, additional components typically include:
Engineering roles, while still requiring strong ML knowledge, place greater emphasis on deployment and optimization skills. What Drives the AI Talent Movement? Understanding what motivates AI talent is crucial for successful recruitment. The primary drivers I've observed include:
Staying Connected: Industry Networks and Resources The AI community remains highly connected through various channels: Major Conferences
Digital Platforms
The Rise of AI in Recruitment Ironically, AI itself is transforming the recruitment process. New tools and approaches include:
Effective Passive Talent Engagement Successful talent engagement strategies now include:
Portfolio Assessment and Beyond One crucial insight I've gained is the importance of looking beyond traditional metrics when assessing AI talent. While GitHub portfolios provide valuable insights, some highly capable candidates may not perform well in traditional interviews. This has led to a more holistic approach to candidate assessment, including:
Looking Ahead As the AI field continues to evolve, recruitment strategies must adapt. Companies need to focus on:
Conclusion The AI recruitment landscape continues to evolve rapidly, driven by technological advancement and changing candidate preferences. Success in this space requires a deep understanding of both technical requirements and human factors. Companies must stay agile in their recruitment approaches while maintaining high standards for technical excellence. This image illustrates a significant trend in OpenAI's innovative work on large language models: the simultaneous reduction in costs and improvement in quality over time. This trend is crucial for AI product and business leaders to understand as it impacts strategic decision-making and competitive positioning. Key Insights:
Generative AI startups can capitalize on the trend of decreasing costs and improving quality to drive significant value for their customers. Here are some strategic approaches 1. Cost-Effective Solutions:
2. Enhanced Product Offerings:
3. Strategic Investment in R&D:
4. Operational Efficiency:
When hiring AI engineers to build Generative AI (GenAI) products during the evolution of a startup from seed-stage to PMF (Product-Market Fit) stage to Growth stage, it's important to consider strategies that align with the company's evolving needs and budget constraints. Here are some strategies to consider at each stage:
Seed Stage 1. Focus on Versatility: At this stage, hire AI engineers who are generalists and can wear multiple hats. They should have a broad understanding of AI technologies and be capable of handling various tasks, from data preprocessing to model development. 2. Leverage Freelancers and Contractors: Consider hiring freelance AI specialists or contractors for short-term projects to manage costs. This approach provides flexibility and allows you to access specialized skills without long-term commitments. 3. Upskill Existing Team Members: If you already have a technical team, consider upskilling them in AI technologies. This can be more cost-effective than hiring new talent and helps retain institutional knowledge. PMF Stage 1. Hire for Specialized Skills: As you approach product-market fit, start hiring AI engineers with specialized skills relevant to your GenAI product, such as expertise in natural language processing or computer vision. 2. Build a Strong Employer Brand: Establish a strong brand as an employer to attract top talent. Highlight your mission, values, and the impact of your GenAI product to appeal to candidates who share your vision. 3. Offer Competitive Compensation: While budget constraints are still a consideration, offering competitive salaries and benefits can help attract and retain skilled AI engineers in a competitive market. 4. Implement Knowledge-Sharing Practices: Encourage mentoring and knowledge-sharing initiatives within your team to enhance skill development and foster collaboration. Growth Stage 1. Scale the Team: As your startup grows, scale your AI team to meet increasing demands. Hire senior AI engineers and data scientists who can lead projects and mentor junior team members. 2. Invest in Continuous Learning: Provide opportunities for ongoing learning and development to keep your team updated with the latest AI advancements. This investment helps maintain a competitive edge and fosters employee satisfaction. 3. Optimize Recruitment Processes: Streamline your hiring process to efficiently identify and onboard top talent. Use AI tools to assist in candidate screening and reduce bias in hiring decisions. 4. Foster a Collaborative Culture: Create a work environment that encourages innovation, creativity, and collaboration. This helps retain talent and enhances team productivity. By adapting your hiring strategies to the specific needs and constraints of each stage, you can effectively build a strong AI team that supports the development and scaling of your GenAI products. Vector databases have recently gained prominence with the rise of large language models and generative AI. A vector database is a data store for unstructured text in the form of vector embeddings for various AI models and applications. Embeddings are a high dimensional vector representation of text that conveys rich semantic information and represent an efficient way of capturing unstructured data like text.
The rising popularity of large language models like GPT-4, Gemini, Claude-2, Llama-2, Mixtral and others have fuelled tremendous interest in generative AI across the industry to build applications based on these models. Vector databases are specialized for handling vector data that is used to train or fine-tune these foundational models for domain and company specific use cases. Unlike traditional scalar-based databases, vector databases offer optimized storage and querying capabilities for vector embeddings. Although several vector databases are now available in the market like Pinecone, Chroma, Qdrant amongst others, deciding which vector database to choose for enterprise use cases is not a straightforward decision. In this article, you will learn how to decide which vector database to choose for your organization based on criteria like performance, reliability, scalability, cost-efficiency, developer experience, security, technical support amongst others. Key Considerations In this section, you will learn in detail about each of the key factors that should be considered to make your final selection of a vector database. These include data and use case characteristics, performance, functionality, enterprise-readiness, developer experience, and future roadmap. 1. Data and Use Case It is important to work backwards from the specific business use case that you are planning to solve by leveraging organizational data and the latest techniques from the field of generative AI. For instance, if your business objective is to build an enterprise knowledge management chatbot like McKinsey’s Lilli, you will need to organize and prepare all the in-house text data such as documents, emails, chat messages etc. The use case defines several aspects of the data, including its size, frequency, data type, growth in the volume of data over time, data freshness and consequently the nature of the underlying vector embeddings to be stored in the vector database. These vectors may be sparse, dense, and also span multiple modalities depending on the use case. Additionally, careful planning and scoping of the use case also helps you understand other crucial aspects such as the number of users, the number of queries per day, the peak number of queries at any given instant, as well as the query patterns of the users. Vector databases utilize indexing and vector search powered by k-nearest neighbors (kNN) or approximate nearest neighbor (ANN) algorithms. This empowers a vector db to perform similarity search and identify the most similar vectors in the database. This capability underlies enterprise use cases based on natural language processing such as question-answering, document analysis, recommender systems, image and voice recognition etc. 2. Performance 2.1 Query latency and query per second (QPS) The primary performance metrics of a vector db are the query latency, i.e., the time it takes to run a query and get the result and the query per second that defines the throughput in terms of the number of queries processed in a second. These parameters are critical for ensuring a seamless user experience for several applications that require real-time results such as chatbots. Typical QPS values range from ~50-300 and the average query latency from 25-100 ms depending on the underlying hardware. 2.2 Scalability Scalability measures the ability of the vector database to grow and expand further to support the requirements of its customers. The scale can be measured in terms of the number of embeddings that can be supported and in terms of horizontal scaling of existing resources and vertical scaling of additional servers. Typically, most existing vector db companies provide scale-out capabilities up to a billion vectors without any performance degradation. If the resources can scale automatically, then you can be rest assured that your application will always be up and running. 2.3 Accuracy A vector database is as good as its accuracy of retrieving the right set of results based on the user queries. Here, the choice of vector search algorithms to identify data sources with similar embeddings as the embedding of the user query is pivotal. There are several different algorithms used for powering vector search such as kNN, ANN, FAISS, NGT. These algorithms generate approximate results and the best vector databases provide a good trade-off between speed and accuracy. 3. Functionality 3.1 Filtering on metadata In practice, filtering vector search results based on the metadata helps reduce the search space, thus providing for faster and more accurate search results. Typical metadata includes information like dates, versions, tags and the ability of a vector database to store multiple metadata fields allows for a better search experience. 3.2 Integrations Integrating a vector database into the existing data and engineering infrastructure in your organization is critical to faster adoption and lesser time to value. The ability of vector databases to seamlessly integrate with essential infrastructure elements like the cloud infrastructure, underlying large language models, databases etc. is a key factor to consider. 3.3 Cost-efficiency While performance metrics and functionality are core to a technology, the cost should be reasonable and fit your budget. The pricing of vector databases is a function of the number of ‘write’ operations such as update and delete and the number of queries. Other factors that affect the cost include the dimensionality of the embedding, the number of vectors stored in the database, and the size of the metadata. Depending on your use case and requirements, it is essential to estimate the overall cost of running your application at scale on a monthly or quarterly basis and evaluate the overall costs relative to your budget and the expected revenue from running the AI applications. 4. Enterprise-readiness 4.1 Security and compliance For most enterprise companies, it is imperative that any external vendor they employ meets strict security and compliance requirements. These requirements include SOC2, GDPR, HIPAA, ISO compliance and others, depending on the domain in which the company operates. The data privacy and security standards have gone up in the light of recent cybersecurity attacks and breaches of customer data, and you should ensure that any vector db vendor meets your specific security and compliance requirements. 4.2 Cloud setup Several modern companies have undergone digital transformation and house their entire data and infrastructure in the cloud vs on-premise. You may choose to manage and maintain your infrastructure via a self-hosted setup or go for a fully managed SaaS platform. The benefit of a fully managed system is that it automates clusters with minimal requirements for you to provision and scale clusters or take care of operational issues. 4.3 Availability Availability, i.e. the ability of your vector db to run without any interruptions, issues or downtime is essential to not adversely impact user experience. Most vector database providers vouch for specific SLAs which should meet the requirements for your applications. Typical values include 99.9% for uptime SLA and a few hours to a few business days for response time SLA depending on the severity of the production issue. 4.4 Technical support More often than not, you might be stuck facing some issues with your vector db and need some hands-on support from the vendor to help troubleshoot the issue. Does the company provide you with a dedicated team who can be available at a short notice to get on a call and figure out how to solve the problem? The quality of responsiveness and customer support experience provided by a vector db company is valuable and helps you develop a stronger sense of trust in the company. 4.5 Open source vs Closed source Some vector db companies are closed source and operate under a proprietary license such as Pinecone. At the same time, there are a host of vector db companies that are open source under the Apache 2.0 license such as Qdrant or Chroma while also offering a fully managed service. This can also influence your choice of the vector db provider. 5. Developer experience 5.1 Community Software and AI engineers are the core professionals who will work on the vector db and integrate it in the company’s infrastructure and deploy your generative AI application to production. Therefore, the quality of experience that developers have with a vector db solution is integral in shaping your final decision. Having an open-source community on Slack or Discord helps build more engagement and trust with developers than commercial vendor support. It provides your developers an opportunity to learn from developers at other companies as well and discuss and solve issues by leveraging the wisdom of the community. 5.2 Onboarding Onboarding a new technology is challenging as it determines the time your developer team takes to properly understand the product, integrate it, troubleshoot any issues, and become an expert in using the vector database. The availability of APIs and SDKs as well as clear product demos and documentation goes a long way in reducing the barriers to understanding a new vector database so that your developers can build with speed and confidence. 5.3 Time to value Similar to the time to onboard a new vector db, another important factor is the time to business value. If a vector db provider vouches for a fast deployment of a production-ready application, then you can realize value sooner, and meet your business goals faster as well. A long gestation time from onboarding to business value is a deterrent for many fast-moving companies and startups especially in the current frantic race to adopt and ship generative AI applications. 5.4 Documentation The quality of the vector database’s documentation determines the time to onboard, time to value, and trust in the provider’s expertise and product. Clear instructions with tutorials, examples and case studies help your developers understand and master the vector db faster. 5.5 User education Similar to community-based offerings, expert technical content such as blogs, demos and videos focused on the existing as well as new features are helpful for your team to understand and build faster. In addition to text and video content, other offerings like user testimonials, workshops, conferences also help educate your team and build more trust in the vector db provider. 6. Future roadmap A final factor to consider is the product roadmap of the vector database provider. Vector databases are an emerging technology that will need to continuously evolve alongside the advances in generative AI models, chip design and hardware, and novel enterprise use cases across domains. Therefore, the vector db vendor should show the potential for evaluating long-term and future industry trends such as sophisticated vectorization techniques for a wider variety of data types, hybrid databases, optimized hardware accelerators for AI applications such as GPUs and TPUs, distributed vector dbs, real-time and streaming data based applications, as well as industry-specific solutions that might require advance data privacy and security. Conclusion Vector databases are an essential ingredient for modern generative AI applications built on unstructured data such as text. Their popularity has increased in parallel to the developments in the generative AI field such as large language models, large image models etc. to serve as the underlying database for handling high-dimensional data stored as vector embeddings. In this article, you learned about several important pillars to help your decision making about the choice of the vector database. These factors include data and use case considerations, performance-based requirements such as query speed and scalability, functionality requirements such integrations and cost-efficiency, enterprise-readiness including security and compliance, and developer experience including community and documentation. Several vector database companies have emerged to build this foundational infrastructure. There is no single ‘best’ vendor of vector db and the ultimate choice is highly contingent on your organization’s business goals. Therefore, a data-driven approach guided by the factors listed in this article will help you select the most optimal vector db for your organization. 1. Introduction Mistral is a pioneering French AI startup that launched their own foundational large language model, called Mistral 7B in September 2023. As of the date of launch, it was the best 7 billion parameter language model, outperforming even larger language models like Llama 2 of size 13 billion parameters across multiple benchmarks. In addition to its performance, Mistral 7B is also popular as the model is open-sourced under the Apache 2.0 license with the model weights available for download. Mixtral 8x7B (hereafter, referred to as “Mixtral”) is the latest model released by Mistral in January 2024 and represents a significant extension of their prior work on Mistral 7B. It is a 7B Sparse Mixture of Experts (SMoE) language model with stronger capabilities than Mistral 7B. It uses 13B active parameters during inference out of a total of 47B parameters, and supports multiple languages, code, and 32k context window. In this blog, you will learn about the details of the Mixtral language model architecture, its performance on various standard benchmarks vis-a-vis state-of-the-art large language models like Llama 1 and 2 and GPT3.5, as well as potential use cases and applications. 2. Mixtral Mixtral is a mixture-of-experts network, similar to [GPT4]. While GPT4 is said to constitute 8 expert models of 222B parameters each, Mixtral is a mixture of 8 experts of 7B parameters each. Thus, Mixtral only requires a subset of the total parameters during decoding, thus allowing faster inference speed at low batch sizes and higher throughput at large batch sizes. 2.1 Sparse Mixture of Experts Figure 1 illustrates the Mixture of Experts (MoE) layer. Mixtral has 8 experts, and each input token is routed to two experts with different sets of weights. The final output is a weighted sum of the outputs of the expert networks, where the weights are determined by the output of the gating network. The number of experts (n) and the top K experts are hyperparameters that are set to 8 and 2 respectively. The number of experts, n determines the total or sparse parameter count while K determines the number of active parameters used for processing each input token. The MoE layer is applied independently per input token in lieu of the feed-forward sub-block of the original Transformer architecture. Each MoE layer can be run independently on a single GPU using a model parallelism distributed training strategy. 2.2 Mistral 7B Mixtral’s core architecture is similar to Mistral 7B, and therefore, a review of its architecture is relevant for a more comprehensive understanding of Mixtral. Mistral 7B is based on the Transformer architecture. In comparison to Llama, it has a few novel features that contribute to it surpassing Llama 2 (13B) on various benchmarks. 2.2.1 Grouped-Query Attention Grouped-Query Attention (GQA) is an extension of multi-query attention, which uses multiple query heads but single key and value heads. Popular language models like PaLM employ multi-query attention. GQA represents an interpolation between multi-head and multi-query attention with single key and value heads per subgroup of query heads. As shown in figure 2, GQA divides query heads into G groups, each of which shares a single key and query head. It is different to multi-query attention which shares single key and value heads across all query heads. GQA is an important feature as it significantly accelerates the speed of inference and also reduces the memory requirements during decoding. This enables the models to scale to higher batch sizes and higher throughput, which is a critical requirement for real-time AI applications. 2.2.2 Sliding Window Attention Sliding window attention (SQA), introduced in the Longformer architecture exploits the stacked layers of a Transformer to attend to information beyond the typical window size. SWA is designed to attend to a much longer sequence of tokens than vanilla attention, and also offers significant reductions in computational cost. The combination of GQA and SWA collectively enhance the performance of Mistral 7B and therefore Mixtral relative to other language models like the Llama series. 3. Performance 3.1 Standard benchmarks The authors of Mixtral benchmarked the performance of the model on a range of standard benchmarks and evaluated the accuracy of Mixtral versus leading language models like Llama 1, Llama 2, and GPT3.5 as shown in figure 3, table 1, and table 2. In summary, Mixtral is better than much larger language models with up to 70B parameters like Llama 2 70B while only using 13B (~18.5%) of the active parameters during inference. Mixtral’s performance is especially superior in tasks focused on mathematics, code generation, as well as multilingual comprehension. 3.2 Multilingual understanding Table 3 shows the performance of Mixtral versus Llama models on multilingual benchmarks. As Mixtral was pretrained with a significantly higher proportion of multilingual data, it is able to outperform Llama 2 70B on multilingual tasks in French, German, Spanish, and Italian while being comparable in English. 3.3 Long-range performance As shown in figure 4, the input context length of language models has increased by several orders of magnitude in the last few years - from 512 tokens for the BERT model to 200k tokens for Claude 2. However, most large language models struggle to efficiently use the longer context. Nelson and colleagues showed that current language models do not robustly make use of information in long input contexts, and their performance is typically highest when the relevant information for tasks such as question-answering or key-value retrieval occurs at the beginning or the end of the input context, with significantly degraded performance when the the models need to access information in the middle of long contexts. Mixtral, which has a context size of 32k tokens, overcomes this deficit of large language models and shows 100% retrieval accuracy regardless of the context length or the position of the key to be retrieved in a long context. The perplexity, a metric that captures the capability of a language model to predict the next word given the context, decreases monotonically as the context length increases. Lower perplexity implies higher accuracy, and the Mixtral model is therefore capable of extremely good performance on tasks based on long context lengths as shown in figure 5. 4. Instruction Fine-tuning Instruction tuning refers to the process of further training large language models on a curated dataset containing (instruction, output) pairs of training samples. Instruction tuning is a computationally efficient method for extending the capabilities of large language models in diverse domains without extensive retraining or architectural changes. “Mixtral - Instruct” model was fine-tuned on an instruction dataset followed by Direct Preference Optimization (DPO) on a paired feedback dataset. DPO is a technique to optimize large language models to adhere to human preferences without explicit reward modeling or reinforcement learning. As of January 26, 2024, on the standard LMSys Leaderboard, Mixtral - Instruct continues to be the best performing open-source large language model. This leaderboard is a crowdsourced open platform for evaluating large language models that ranks models following the Elo ranking system in chess. Mixtral - Instruct only ranks below proprietary models like OpenAI’s GPT-4, Google’s Bard and Anthropic’s Claude models, while being a significantly small model. This extremely strong performance of Mixtral - Instruct and with an open-source friendly Apache 2.0 license opens up the possibility for tremendous adoption of Mixtral for both commercial and non-commercial applications. It represents a much more powerful alternative to Llama 2 70B that is already being used as the foundational model for extending large language models to other languages like Hindi or Tamil that are spoken widely but not adequately represented in the training dataset of these large language models. 5. Use Cases
Mixtral represents the numero uno of open-source large language models as it clearly outperforms the previous best open-source model, Llama 2 70B, by a significant margin, while providing for faster and cheaper inference. At the time of writing this article, Mixtral has been available in the open-source for less than two months and we are yet to see many examples of how it is being used in the industry. However, there are some early movers, like the Brave browser that has already incorporated Mixtral in its AI-based browser assistant, Leo. Mixtral is also incorporated by Brave for powering its [programming-related queries in Brave Search. It is only a matter of time before Mixtral witnesses widespread adoption across industry for a variety of use cases and challenges the hegemony of proprietary models like OpenAI’s GPT-4 and the likes. 6. Conclusion Mixtral is a cutting-edge, mixture-of-experts model with state-of-the-art performance among open-source models. It consistently outperforms Llama 2 70B on a variety of benchmarks while having 5x fewer active parameters during inference. It thus allows for a faster, more accurate and cost-effective performance for diverse tasks including mathematics, code generation, as well as multilingual understanding. Mixtral - Instruct also outperforms proprietary models such as Gemini-Pro, Claude-2.1, GPT-3.5 Turbo on human evaluation benchmarks. Mixtral thus represents a powerful alternative to the much larger and more compute intensive Llama 2 70B as the de facto best open-source model, and will facilitate development of new methods and applications benefitting a wide variety of domains and industries. Published by Pachyderm MLOps refers to the practice of delivering machine-learning models through repeatable and efficient workflows. It consists of a set of practices that focuses on various aspects of the machine-learning lifecycle, from the raw data to serving the model in production.
Despite the routine nature of many of these MLOps tasks, it’s not uncommon for several steps to still be processed manually, incurring massive ongoing maintenance costs. Your organization can benefit tremendously from automating MLOps to achieve efficiency, reliability, and cost-effectiveness at scale. For example, automation could:
However, many companies lack the capabilities, talent, and infrastructure to drive machine-learning models to production reliably and efficiently. This not only means wasted time and resources but also hinders adoption and trust in AI. The sooner that companies of any size, enterprise and startups alike, invest in automating their MLOps processes to expedite delivery of machine-learning models, the sooner they can meet their business goals. So, let’s talk about six methods for automating MLOps that can help streamline the continuous delivery of machine-learning models to production. 1. Automated Data-driven Pipelines Delivering a machine-learning model involves numerous steps, from processing the raw data to serving the model to production. Machine-learning pipelines consist of several connected components that can execute automatically in an independent and modular fashion. For instance, different pipelines can focus on data processing, model training, and model deployment. When it comes to machine learning, data is as or more important than code; pipelines track changes in training data and automatically trigger pipelines for processing new or changed data. Such automated data-driven pipelines kickstart further iterations of data processing and model training based on the new datasets. Without automated pipelines, the data science team executes these steps manually. This inevitably leads to manual errors, production delays, and lack of visibility of the overall pipeline for relevant stakeholders. Manually built pipelines are harder to troubleshoot when defects creep into production, and so compound technical debt for the MLOps team. Automating pipelines can significantly reduce manual effort and free up organizational time, resources, and bandwidth so your MLOps team can focus on other challenges. 2. Automated Version Control In the realm of software engineering, version control refers to the tracking of changes in code, making it easier to monitor, troubleshoot and collaborate among large teams. In machine learning, the need for version control applies to data as well as code. Version control is especially critical for machine-learning applications in domains like healthcare and finance that have a higher burden of model explainability, data privacy, and compliance. Automating version control for machine learning ensures that the history of the different moving parts—code, data, configurations, models, pipelines—is centrally maintained and fully automated. Through automated version control, your MLOps team has a more efficient ability to trace bugs, roll back changes that didn’t work, and collaborate with greater transparency and reliability. 3. Automated Deployment Large data science organizations develop multiple models trained on structured and unstructured data for various use cases. Some of these models need to make predictions in real-time at ultra-low latencies while others may be invoked less often or serve as inputs to other models. All these models need to be periodically retrained to improve performance and mitigate challenges due to data drift. Deploying models manually in such a complex business environment is highly inefficient and time consuming. Manual deployment is cumbersome and can cause serious errors that impacts model serving and the quality of model predictions. This often leads to poor customer experience and customer churn. Deployment of models to production involves several steps. It starts with choosing multiple environments and services for staging the model, selecting appropriate servers that can handle the production traffic, and pushing the model forward to production. It then includes monitoring model performance and data drift, automating model retraining with more recent data and inputs, and ensuring the reliability of the models through better testing and security. Automating these steps yields several benefits:
4. Automated Feature Selection for Model Training Classical machine-learning models are trained on data with hundreds to thousands of features, ie, key variables in the dataset that are often correlated with model performance. Choosing a set of features that significantly account for the predictive power of the trained models is therefore essential. Feature selection by hand is cumbersome and requires significant subject matter expertise. Automating feature selection not only helps train the machine-learning model faster on a smaller dataset but also makes the model easier to interpret. Selecting fewer features but with high feature importance is critical in the preparation of training data. Automated feature selection helps reduce the size of the model to make faster predictions, or to increase the speed of training your machine learning or deep learning model. Feature selection can be automated using either unsupervised learning techniques, like principal component analysis, or supervised methods using statistical tests like f-test, t-test, or chi-squared tests. 5. Automated Data Consistency Checks A central focus of data-centric AI is the quality of data used to train machine-learning models. Data quality determines the accuracy of the models, which in turn impacts business decision-making. So the underlying data must have minimal errors, inconsistencies, or missing values. Simplify the challenge of ensuring data quality and consistency by automating unit tests that check data types, expected values, missing cells, column and row names, and counts. Consider extending your automation to the analysis and reporting of the statistical properties of relevant features. If the training dataset consists of a few thousand to millions of samples and hundreds to thousands of features, you can’t manually evaluate every row and column for data consistency. Automated routines that test for different types of data inconsistencies makes it easier to eliminate poor quality data. 6. Automated Script Shortcuts Processing data and training machine-learning models involves a lot of boilerplate code. Automate the creation of scripts for common tasks to save time and effort while providing better visibility and version control. Typically, data scientists and machine-learning engineers create their own unique automations and shortcuts, which are seldom shared among the larger team. However, having a centralized repository of script shortcuts reduces the need to improvise, and perhaps even avoids a team member reinventing the wheel. Save these shortcuts as executable bash scripts for different use cases like downloading data from data lakes or uploading model artifacts in backup folders. Automate MLOps with Pachyderm Fortunately, you don’t have to build these MLOps automation features in-house from scratch. Pachyderm is a software platform that integrates with all the major cloud providers to continuously monitor changes in data at the level of individual files. Whenever any existing file is modified or new files are added to a training dataset, Pachyderm triggers events for pipelines and launches a new iteration of data transformation, testing data quality, or model training. Pachyderm can take care of automated version control and lineage for data as well as [deployment](https://www.pachyderm.com/events/how-to-build-a-robust-ml-workflow-with-pachyderm-and-seldon/. It also enables autoscaling and parallel processing on Kubernetes, orchestrating server resources for deployment at scale. Conclusion With a lot of the machine learning lifecycle still handled manually across the industry, consider automating any of the six MLOps tasks we covered here in order to achieve efficiency and reliability at scale:
A data science organization’s level of automation across its machine-learning lifecycle indicates its maturity. The velocity of training and delivering new machine-learning models to production increases significantly with that maturity, leading to faster realization of business impact. Pachyderm, a leading enterprise-grade data science platform, helps make explainable, repeatable, and scalable machine learning systems a reality. Its automated data pipeline and versioning tools can power complex data transformations for machine learning while remaining cost effective. Introduction
Traditional machine learning is based on training models on data sets that are stored in a centralized location like an on-premise server or cloud storage. For domains like healthcare, privacy and compliance issues complicate the collection, storage, and sharing of critical patient and medical data. This poses a considerable challenge for building machine learning models for healthcare. Federated learning is a technique that enables collaborative machine learning without the need for centralized training data. A shared machine learning model is trained by keeping all the training data on a device, thereby ensuring higher levels of privacy and security compared to the traditional machine learning setup where data is stored in the cloud. This technique is especially useful in domains with high security and privacy constraints like healthcare, finance, or governance. Users benefit from the power of personalized machine learning models without compromising their sensitive data. This article describes federated learning and its various applications with a special focus on healthcare. How Does Federated Learning Work? This section discusses in detail how federated learning works for a hypothetical use case of a number of healthcare institutions working collaboratively to build a deep learning model to analyze MRI scans. In a typical federated learning setup, there’s a centralized server, for instance, in the cloud, that interacts with multiple sources of training data, such as hospitals in this example. The centralized server houses a global deep learning model for the specific use case that is copied to each hospital to train on its own data set. Each hospital in this setup trains the global deep learning model locally for a few iterations on its internal data set and sends the updated version of the model back to the centralized server. Each model update is then sent to the cloud server using encrypted communication protocols, where it’s averaged with the updates from other hospitals to improve the shared global model. The updated parameters are then shared with the participating hospitals so that they can continue local training. In this fashion, the global model can learn the intricacies of the diverse data sets stored across various partner hospitals and become more robust and accurate. At the same time, the collaborating hospitals never have to send their confidential patient data outside their premises, which helps ensure that they don’t violate strict regulatory requirements like HIPAA. The data from each hospital is secured within its own infrastructure. This unique federated learning setup is easily scalable and can accommodate new partner hospitals; it also remains unaffected if any of the existing partners decide to exit the arrangement. Use Cases for Federated Learning in Healthcare Federated learning has immense potential across many industries, including mobile applications, healthcare, and digital health. It has already been used successfully for healthcare applications, including health data management, remote health monitoring, medical imaging, and COVID-19 detection. As an example of its use for mobile applications, Google used this technique to improve Smart Text Selection on Android mobile phones. In this use case, it enables users to select, copy, and use text quickly by predicting the desired word or sequence of words based on user input. Each time a user taps to select a piece of text and corrects the model’s suggestion, the global model receives precise feedback that’s used to improve the model. Federated learning is also relevant for autonomous vehicles to improve real-time decision-making and real-time data collection about traffic and roads. Self-driving cars require real-time updates, and the above types of information can be effectively pooled from several vehicles in real time using federated learning. Privacy and Security With increased focus on data privacy laws from governments and regulatory bodies, protecting user data is of utmost importance. Many companies store customer data, including personally identifiable information such as names, addresses, mobile numbers, email addresses, etc. Apart from these static data types, user interactions with companies such as chat, emails, and phone calls also carry sensitive details that need to be protected from hackers and malicious attacks. Privacy-enhancing technologies like differential privacy, homomorphic encryption, and secure multi-party computation have advanced significantly and are used for data management, financial transactions, and healthcare services, as well as data transfer between multiple collaborative parties. Many startups and large tech companies are investing heavily in privacy technologies like federated learning to ensure that customers have a pleasant user experience without their personal data being compromised. In the healthcare industry, federated learning is a promising technology that allows, for example, hospitals to share electronic health records (EHR) to create more accurate models. Privacy is preserved without violating strict HIPAA standards by decentralizing the data processing, which is distributed among multiple end-points instead of being managed from a central server. Simply put, federated learning allows training of machine learning models without the need to collect raw data in a central location; instead, the data used by each end-point (in this example, hospitals) remains local. By combining the above with differential privacy, hospitals can even provide a quantifiable measure of data anonymization. Federated Learning vs. Distributed Learning and Edge Computing Federated learning is often confused with distributed learning. In the context of deep learning, distributed training is used to train large, deep neural networks across a number of GPUs or machines. However, distributed learning relies on centralized training data shared across multiple nodes to increase the speed of model training. Federated learning, on the other hand, is based on decentralized data stored across a number of devices and produces a central, aggregate model. A fascinating example of the potential of this technology is using federated learning-based Person Movement Identification (PMI) through wearable devices for smart healthcare systems. Edge computing is a related concept where the data and model are centralized in the same individual device. Edge computing doesn’t train models that learn from data stored across multiple devices, as in the case of federated learning. Instead, a centrally trained model is deployed on an edge device, where it runs on data collected from that device. For example, edge computing is applied in the context of Amazon Alexa devices, where a wake word detection model is stored on the device to detect every utterance of “Alexa.” AI and Healthcare Federated machine learning has a strong appeal for healthcare applications. By design, patient and medical data is highly regulated and needs to adhere to strict security and privacy standards. By collating data from participating healthcare institutions, organizations can ensure that confidential patient data doesn’t leave their ecosystem; they can also benefit from machine learning models trained on data across a number of healthcare institutions. Large hospital networks can now work together and pool their data to build AI models for a variety of medical use cases. With federated learning, smaller community and rural hospitals with fewer resources and lower budgets can also benefit and provide better health outcomes to more of the population. This technique also helps to capture a greater variety of patient traits, including variations in age, gender, and ethnicity, which may vary significantly from one geographic region to another. Machine learning models based on such diverse data sets are likely to be less biased and more likely to produce more accurate results. In turn, the expert feedback of trained medical professionals can help to further improve the accuracy of the various AI models. Federated learning, therefore, has the potential to introduce massive innovations and discoveries in the healthcare industry and bring novel AI-driven applications to market and patients faster. Conclusion Federated learning enables secure, private, and collaborative machine learning where the training data doesn’t leave the user device or organizational infrastructure. It harnesses diverse data from various sources and produces an aggregate model that’s more accurate. This technique has introduced significant improvements in information sharing and increased the efficacy of collaborative machine learning between hospitals. It circumvents and overcomes the challenges of working with highly sensitive medical data while leveraging the power of state-of-the-art machine learning and deep learning. Related Blogs ![]()
Web3 is the third generation of the internet based on emerging technologies like blockchains, tokens, DAOs, digital assets, decentralised finance that has the potential to give back control of digital assets back to the users with greater trust and transparency.
Typical web3 applications focus on DAOs, DeFi, Stablecoins, Privacy and digital infrastructure, the creator economy amongst others. The web3 ecosystem represents a promising green space for creators, developers, and various types of tech and non-tech professionals as well. In my talk (video and slides shared above) for Crater's Encrypt 2022 hackathon, I describe how AI can be leveraged to build commercially viable web3 applications for India. I cover a number of relevant AI/ML datasets, models, resources and applications for these domains, recognized by the Ministry of Electronics and Information Technology's National Strategy on Blockchain:
Related Blogs Machine learning operations (MLOps) refer to the emerging field of delivering machine learning models through repeatable and efficient workflows. The machine learning lifecycle is composed of various elements, as shown in the figure below. Similar to the practice of DevOps for managing the software development lifecycle, MLOps enables organizations to smooth the path to successful AI transformation by providing an engineering and technological backbone to underlying machine learning processes.
MLOps is a relatively new field, as the commercial use of AI at scale is itself a fairly new practice. MLOps is modeled on the existing field of DevOps, but in addition to code, it incorporates additional components, such as data, algorithms, and models. It includes various capabilities that allow the modern machine learning team, comprising data scientists, machine learning engineers, and software engineers, to organize the building blocks of machine learning systems and take models to production in an efficient, reliable, and reproducible fashion. MLOps tools MLOps is carried out using a diverse set of tools, each catering to a distinct component of the machine learning pipeline. Each tool under the MLOps umbrella is focused on automation and enabling repeatable workflows at scale. As the field of machine learning has evolved over the last decade, organizations are increasingly looking for tools and technologies that can help extract the maximum return from their investment in AI. In addition to cloud providers, like AWS, Azure, and GCP, there are a plethora of start-ups that focus on accommodating varied MLOps use cases. In this article, I will cover tools for the following MLOps categories:
In the following section, I will list a selection of MLOps tools from the above categories. It is important to note that although a particular tool might be listed under a specific category, the majority of these tools have evolved from their initial use case into a platform for providing multiple MLOps solutions across the entire ML lifecycle. Metadata Management Building machine learning models involves many parameters associated with code, data, metrics, model hyperparameters, A/B testing, and model artifacts, among others. Reproducing the entire ML workflow requires careful storage and management of the above metadata. Featureform Featureform is a virtual feature store. It can integrate with various data platforms, and it enables the management and governance of the data from which features are built. With a unique, feature-first approach, Featureform has built a product called Embeddinghub, which is a vector database for machine learning embeddings. Embeddings are high-dimensional representations of different kinds of data and their interrelationships, such as user or text embeddings, that quantify the semantic similarity between items. MLflow MLflow is an open-source platform for the machine learning lifecycle that covers experimentation and deployment, and it also includes a central model registry. It has four principal components: Tracking, Projects, Models, and Model Registry. In terms of metadata management, the MLflow Tracking API is used for logging parameters, code, metrics, and model artifacts. Versioning For machine learning systems, versioning is a critical feature. As the pipeline consists of various data sets, labels, experiments, models, and hyperparameters, it is necessary to version control each of these parameters for greater accessibility, reproducibility, and collaboration across teams. Pachyderm Pachyderm provides a data layer for the machine learning lifecycle. It offers a suite of services for data versioning that are organized by data repository, commit, branch, file, and provenance. Data provenance captures the unique relationships between the various artifacts, like commits, branches, and repositories. DVC DVC, or Data Version Control, is an open-source version control system for machine learning projects. It includes version control for machine learning data sets, models, and any intermediate files. It also provides code and data provenance to allow for end-to-end tracking of the evolution of each machine learning model, which promotes better reproducibility and usage during the experimentation phase. Experiment Tracking A typical machine learning system may only be deployed after hundreds of experiments. To optimize the model performance, data scientists perform numerous experiments to identify the most appropriate set of data and model parameters for the success criteria. Managing these experiments is paramount for staying on top of the data science modeling efforts of individual practitioners, as well as the entire data science team. Comet Comet is a machine learning platform for managing and optimizing the entire machine learning lifecycle, from experiment tracking to model monitoring. Comet streamlines the experimentation workflow for data scientists and enables clear tracking and visualization of the results of each experiment. It also allows side-by-side comparisons of experiments so users can easily see how model performance is affected. Weights & Biases Weights & Biases is another popular machine learning platform that provides a host of services, including [experiment tracking](https://wandb.ai/site/experiment-tracking). It facilitates tracking and visualization of every experiment, allows rerunning previous model checkpoints, and can monitor CPU and GPU usage in real time. Model Deployment Once a machine learning model is built and tests have found it to be robust and accurate enough to go to production, the model is deployed. This is an extremely important aspect of the machine learning lifecycle, and if not managed well, it can lead to errors and poor performance in production. AI models are increasingly being deployed across a range of platforms, from on-premises servers to the cloud to edge devices. Balancing the trade-offs for each kind of deployment and scaling the service up or down during critical periods are very difficult tasks to achieve manually. A number of platforms provide model deployment capabilities that automate the entire process of taking a model to production. Seldon Seldon is a model deployment software that helps enterprises manage, serve, and scale machine learning models in any language or framework on Kubernetes. It’s focused on expediting the process to take a model from proof of concept to production, and it’s compatible with a variety of cloud providers. Kubeflow Kubeflow is an open-source system for productionizing models on the Kubernetes platform. It simplifies machine learning workflows on Kubernetes and provides greater portability and scalability. It can run on any hardware and infrastructure on which Kubernetes is running, and it is a very popular choice for machine learning engineers when deploying models. Monitoring Once a model is in production, it is essential to monitor its performance and log any errors or issues that may have caused the model to break in production. Monitoring solutions enable setting thresholds as indicators for robust model performance and are critical in solving for known issues, like data drift. These tools can also monitor the model predictions for bias and explainability. Fiddler Fiddler is a machine learning model performance monitoring software. To ensure expected model performance, it monitors data drift, data integrity, and anomalies in the data. Additionally, it provides model explainability solutions that help identify, troubleshoot, and understand underlying problems and causes of poor performance. Evidently Evidently is an open-source machine learning model monitoring solution. It measures model health, data drift, target drift, data integrity, and feature correlations to provide a holistic view of model performance. Conclusion MLOps is a growing field that focuses on organizing and accelerating the entire machine learning lifecycle through best practices, tools, and frameworks borrowed from the DevOps philosophy of software development lifecycle management. With machine learning, the need for tooling is much greater, as machine learning is built on foundational blocks of data and models, as well as code. To bring reliability, maturity, and scale to machine learning processes, a diverse set of MLOps tools are being increasingly used. These tools are developed for optimizing the nuts and bolts of machine learning operations, including metadata management, versioning, model building and experiment tracking, model deployment, and monitoring in production. Over the past decade, the field of AI and machine learning has grown rapidly, with organizations embracing AI and recognizing its critical importance for transforming their business. The field of MLOps is still young, but the creation and adoption of tools will further empower organizations in their journey of AI transformation and value creation. Related Blogs Published by CloudForecast Introduction
Amazon Redshift is a widely used cloud data warehouse that is used by many businesses, like Nasdaq, GE, and Zynga, to process analytical queries and analyze exabytes of data across databases, data lakes, data warehouses, and third-party data sets. There are multiple use cases for Redshift, including enhancing business intelligence capabilities, increasing developer and analyst productivity, and building machine learning models for predictive insights, like demand forecasting. Amazon Redshift can be leveraged by modern data-driven organizations to vastly improve their data warehousing and analytics capabilities. However, the pricing for Redshift services can be challenging to understand, with multiple criteria that define the total cost. In this article, you’ll learn about Amazon Redshift and its pricing structure, with suggestions for how to optimize costs. What Is Amazon Redshift? Essentially, Amazon Redshift provides analytics over multiple databases and offers high scalability in a secure and compliant fashion. Additionally, there is a serverless option called Amazon Redshift Serverless that makes it even easier to rapidly scale analytics setup without requiring a managed data warehouse infrastructure. It helps with data democratization and assists various data stakeholders to extract data insights by simply loading and querying data in the warehouse. Amazon Redshift Pricing In this section, you’ll learn about Amazon Redshift’s capabilities as it pertains to usage and pricing. Free Tier For new enterprise users, the AWS Free Tier provides a free two-month trial of the DC2.Large node. This free service includes 750 hours per month, which is sufficient to run a single DC2.Large node with 160GB of compressed solid-state drives (SSD). On-Demand Pricing When you launch an Amazon Redshift cluster, you select a number of nodes in a specific region as well as their instance type to run your data warehouse. In on-demand pricing, a simple hourly rate applies based on the previous configuration and is billed as long as the cluster is live. The typical hourly rate for a DC2.Large node is $0.25 USD per hour. Redshift Serverless Pricing With Amazon Redshift Serverless, costs accrue only when the data warehouse is active and is measured in units of Redshift Processing Units (RPUs). You’re charged in terms of RPU-hours on a per-second basis. The serverless configuration also includes concurrency scaling and Amazon Redshift Spectrum, and the cost for these services is already included. Managed Storage Pricing Amazon Redshift charges for the data stored in a managed storage at a specific rate per GB-month. Its usage is calculated on an hourly basis as a function of the total amount of data and starts as low as $0.024 USD per GB with the RA3 node. The cost of a managed storage also varies according to the particular AWS region in which the data is stored. For example, consider the cost of a managed storage pricing where 100TB of data is stored with an RA3 node type for thirty days in the US East region, where the cost is $0.024 USD per GB-month. The total usage for thirty days in GB-hours is as follows: 100TB × 1024GB/TB (converting TB to GB) × 30 days × 24 hours/day = 73,728,000 GB-hours Then you can convert GB-hours to GB-months: 73,728,000 GB-hours / (24 × 30) hours per month = 102,400 GB-months Finally, you can calculate the total cost of 102,400 GB-months at $0.024 USD/GB-month in the US East region: 102,400 GB-months × $0.024 USD = $2,457.60 USD Spectrum Pricing With Amazon Redshift Spectrum, users can run SQL queries directly on the data in the S3 buckets. Here, the cost is based on the number of bytes scanned by the Spectrum utility. The pricing of Redshift Spectrum is $5 USD per terabyte of data scanned. Concurrency Scaling Pricing With Concurrency Scaling, Amazon Redshift can be scaled to multiple concurrent users and queries. For every twenty-four hours that your main cluster is live, you accrue a one-hour credit. Any additional usage is charged on a per-second, on-demand rate that depends on the number of types of nodes in the main cluster. Reserved Instance Pricing Reserved instances are designated for stable production workloads and are less expensive than clusters run on an on-demand basis. Significant cost savings can be achieved through long-term usage and commitment to Amazon Redshift in the span of a few years. Pricing for reserved instances can either be paid all up front, partially up front, or monthly over the course of a year with no up-front charges. Amazon Redshift Cost Optimization Considerations Before you begin using Amazon Redshift, you need to be aware of your current costs. AWS Cost ExplorerThe AWS Pricing Calculator provides a configurable tool to estimate the cost of using Amazon Redshift. For instance, the annual cost of one node of the DC2.8xlarge instance in the US East (Ohio) region on an on-demand basis is as follows: 1 instance × $4.80 USD hourly × 730 hours in a month × 12 months = $42,048 USD The cost for the same Amazon Redshift configuration for a reserved instance for a one-year term paid up front is $27,640 USD. AWS Tags Using AWS cost allocation tags can help you decode and manage your AWS costs. Tagsenable AWS resources to be labeled in the form of key-value pairs and can include various types, like technical, business, security, and automation. Once the tags are activated in the Billing and Cost Management console, a cost allocation report can be generated based on the specific resources tagged. Tags can be user-defined or AWS-generated. Amazon Redshift Cost Optimization Optimizing Amazon Redshift costs comes down to effective planning, prudent usage and allocation of resources, and regular monitoring of the usage and associated costs. Optimizing Queries The analytical queries made on the data stored in Amazon Redshift can be optimized to run more efficiently. Queries can be compute-intensive, can be storage-intensive, or can take a long time to execute. There are a number of query tuning techniques that can be used to optimize your queries. Tables with skewed data or missing statistics, and queries with nested loops and long wait times, typically affect query performance and can be improved as illustrated in this AWS developer guide. Here is a commonly used weak query that selects all the columns in a table: SELECT * FROM USERS The previous query can be very inefficient and slow if the table consists of thousands of columns, especially if only a few columns are relevant for the necessary analysis. This query can be optimized by specifying and retrieving the exact column names like the following: SELECT Firstname, Lastname, DOB FROM USERS Cluster Limits and Quotas Usage limits on Amazon Redshift clusters can be programmed using the AWS Command Line Interface (CLI) tool. Limits can be imposed on concurrency scaling in terms of time and spectrum in terms of data scanned. Daily, weekly, or monthly periods can be used. A number of limits and quotas are defined for Redshift resources that can also be applied to constrain the overall costs associated with Redshift. Data Type Amazon Redshift costs can also be managed by storing data in a compressed, partitioned, and columnar data format, like Apache Parquet, since fewer data is scanned. Conclusion Amazon Redshift is a powerful and cost-effective cloud-native data warehouse that provides scalable and performant data analytics and processing capabilities. It also comes with a serverless configuration that allows any data stakeholder to run data queries without the need to provision and manage the data warehouse infrastructure. Amazon Redshift has multiple aspects affecting its pricing, including on-demand or reserved capabilities, serverless, managed storage pricing, Redshift Spectrum pricing, concurrency scaling pricing, and reserved instance pricing. Keeping on top of the various Amazon Redshift costs is not straightforward but can be made easier by AWS cost monitoring tools, like CloudForecast. CloudForecast helps manage AWS costs through daily cost management reports, monthly financial reports, untagged AWS resources discovery, and idle and underutilized resources visibility for cost-saving opportunities. Related blog Published by CloudForecast Introduction
Companies are increasingly moving their production code to serverless functions using AWS Lambda, which has gained popularity for its better code maintenance, low-cost hosting charges, and automatically scaled and optimized performance. But without careful oversight, Lambda can become an expensive choice for your project. Lambda, offered by market-leading AWS, offers many benefits. Lambda is one example of serverless functions, or single-purpose, programmatic functions hosted and maintained by cloud providers like AWS, Azure, or GCP to ensure near-perfect runtime and scaling to any incoming network request volume. Companies can use Lambda, an event-driven compute service, to run any type of application or backend service without worrying about provisioning or managing servers. Lambda adapts to a variety of use cases across startups and enterprises alike. It can process data at scale, run interactive web and mobile backend services, enable powerful machine learning models, and build in-house event-driven applications. It also specifies limits for the amount of compute and storage resources used to run and store serverless functions. These limits apply to a number of resources, such as the number of concurrent executions; storage for uploaded functions as well as quotas for function configuration; deployment and execution parameters like memory allocation; timeout; environment variables; layers; and burst concurrency. The key to using Lambda is keeping your costs in check. This article will review Lambda’s pricing structure to show how costs can be efficiently managed without compromising on operational excellence and execution of Lambda functions. It will also discuss tools like CloudForecast that can help engineering teams monitor and reduce their serverless computing costs on AWS. Understanding AWS Lambda Pricing AWS Lambda pricing is based on the amount of memory allocated to the serverless function and the amount of time the code runs, rounded to the nearest millisecond. The key variables that determine Lambda costs are the type of architecture, the number of requests, the time frame for which the requests apply, the duration of each request (in milliseconds), and the amount of memory allocated to the Lambda function. Each Lambda request starts when code executes in response to an event trigger from services like Amazon’s Simple Notification Service or calls from Amazon API Gateway or via the AWS SDK. The cost for each compute and storage resource is calculated depending on the function configuration. AWS offers a free tier that allows one million free requests per month and 400,000 GB-seconds of compute time per month powered by x86 and Graviton2 processors. It also offers a flexible pricing model called the Compute Savings Plan, based on guaranteed usage (measured in dollars per hour) for a one- or three-year term. AWS Lambda does offer an attractive feature called Provisioned Concurrency that enables greater control over start-up latency when Lambda functions are triggered. Provisioned concurrency solves the problem of variable start-up latency when a Lambda service is triggered on demand and scales up to meet the needs of the application workloads. This overhead in starting a Lambda function is referred to as cold start, and the magnitude of this problem is a function of the time taken to set up the execution environment and the duration for the code to be initialized. As illustrated in this official AWS example, with provisioned concurrency enabled, the percentage of requests served within a given time remains fairly constant—especially for the slowest five percent of the requests—in comparison to a scenario with provisioned concurrency disabled. At scale, this can have a massive impact not only on the costs but also on the user experience. While the first factor is controlled by AWS, the second factor falls to the developer. The code initialization duration is predominantly responsible for cold start latency. Provisioned concurrency solves for cold start by enabling Lambda functions to be initialized for high workloads in milliseconds. AWS provides a pricing calculator to estimate the cost of using Lambda for your applications. The below estimate provides pricing calculations for a sample application with the following settings:
The same pricing calculator can also provide an estimate for provisioned concurrency. In this case, in addition to the above parameters, the cost is a function of the amount of concurrency specified and the period of time the configuration is active. Controlling AWS Lambda Costs AWS Lambda does offer options for controlling costs, but as the above example showed, the cost of function calls can quickly scale up as part of the organizational application workload. If the configuration is not carefully monitored and fine-tuned for current applications, Lambda can become prohibitively expensive. You can keep AWS Lambda costs down by focusing on three important factors:
The cost of a Lambda function invocation is multiplied by its execution time and memory size, so reducing either factor by even a small amount can have a significant impact on billable costs. It’s important to ensure you have the correct configuration. Periodic monitoring of the actual values of the memory size and the number and duration of function calls can help confirm whether the current configuration is fine-tuned for the current workload. AWS Lambda logs are ingested into Amazon CloudWatch, so mining these logs can help optimize the configuration and the costs. External tools like CloudForecast can also monitor usage and costs. Avoiding high maximum execution time also helps save costs. It’s common to have a buffer of execution time beyond what’s specified, but the additional costs incurred by Lambda functions add up, making it prudent to change the value of the “duration of each request” parameter as needed. Lambda Step Functions can also help manage costs. Step functions are state machines with a visual workflow that allow developers to coordinate different tasks like calling various Lambda functions. Using step functions is a more efficient way to poll for the status of tasks. Typically, long polling increases the costs of Lambda functions as they are waiting idle, and step functions help alleviate the total costs based on the number of state transitions to execute the application, instead of the execution time of a workflow. Another tactical method to control Lambda costs is to evaluate whether your application can be run asynchronously. Running async workloads prevents idle downtime in which the AWS Lambda functions wait for external applications to complete. If the overall architecture can be analyzed for idle instances and reconfigured for asynchronous execution, the costs of Lambda functions can be drastically reduced. The frequency at which Lambda functions are invoked can also impact the usage and costs. Where applications like Kinesis are used as a Lambda function trigger, increasing the batch size can reduce the frequency at which the Lambda function needs to be invoked, thus reducing the total number of executions. Writing optimized production code always helps, and its lower execution time can reduce Lambda costs. You can, for instance, record and analyze the Duration metric in CloudWatch for slow execution times. For some applications, EC2 spot instances may be cheaper and more effective than Lambda functions. This is especially true for an application architecture in which the traffic is predictable and sustained, making a reliable EC2 spot instance a more suitable alternative. Conclusion AWS Lambda and serverless functions have had a tremendous impact on the efficient execution of software, data, and machine learning applications in the cloud. Lambda can help you achieve savings on your engineering costs, but it’s possible to reduce your costs even more by optimizing the configuration of your applications and fine-tuning your resources. Doing this work manually can require careful logging and monitoring of your application in production settings. Instead, you can use tools to automate and dynamically adjust Lambda function settings to reduce costs in a more cost- and time-efficient manner. One of those tools is CloudForecast, which can manage and optimize the cost of using AWS services like Lambda. CloudForecast provides an out-of-the-box solution for engineering teams to monitor their monthly budget and move toward a more responsible use of Lambda functions. Its detailed reports suggest ways to reduce AWS costs, and it can also provide reports for your finance and accounting teams. To learn more about how CloudForecast can help with your AWS Lambda costs, check its official blog. Related blog Data science teams are an integral part of early-stage or growth-stage start-ups as midlevel and enterprise companies. A data science team can include a wide range of roles that take care of the end-to-end machine learning lifecycle from project conceptualization to execution, delivery, and monitoring:
The manager of a data science team in an enterprise organization has multiple responsibilities, including the following:
As the data science manager, it’s critical to have a structured, efficient hiring process, especially in a highly competitive job market where the demand outstrips the supply of data science and machine learning talent. A transparent, thoughtful, and open hiring process sends a strong signal to prospective candidates about the intent and culture of both the data science team and the company, and can make your company a stronger choice when the candidates are selecting an offer. In this blog, you’ll learn about key aspects of the process of hiring a top-class data science team. You’ll dive into the process of recruitment, interviewing, and evaluating candidates to learn how to find the ones who can help your business improve its data science capabilities. Benefits of an Efficient Hiring Process Recent events have accelerated organizations’ focus on digital and AI transformation, resulting in a very tight labor market when you’re looking for data sciencedigital skills, like machinelike data science and machine learning, statistics, and programming. A structured, efficient hiring process enables teams to move faster, make better decisions, and ensure a good experience for the candidates. Even if candidates don’t get an offer, a positive experience interacting with the data science and the recruitment teams makes them more likely to share good feedback on platforms like Glassdoor, which might encourage others to interview at the company. Hiring Data Science Teams A good hiring process is a multistep process, and in this section, you’ll look at every step of the process in detail. Building a Funnel for Talent Depending on the size of the data science team, the hiring manager may have to assume the responsibility of reaching out to candidates and building a pipeline of talent. In larger organizations, managers can work with in-house recruiters or even third-party recruitment agencies to source talent. It’s important for the data science managers to clearly convey the requirements for the recruited candidates, such as the number of candidates desired and the profiles of those candidates. Candidate profiles might include things like previous experience, education or certifications, skill set or tech stack, and experience with specific use cases. Using these details, recruiters can then start their marketing, advertising, and outreach campaigns on platforms, like LinkedIn, Glassdoor, Twitter, HackerRank, and LeetCode. In several cases, recruiters may identify candidates who are a strong fit but who may not be on the job market or are not actively looking for new roles. A database of all such candidates ought to be maintained so that recruiters can proactively reach out to them at a more suitable time and reengage the candidates. Another trusted source of identifying good candidates is through employee referrals. An in-house employee referral program that incentivizes current employees to refer candidates from their network is often an effective way to attract the specific types of talent you’re looking for. The data science leader should also publicize their team’s work through channels, like conferences or workshops, company blogs, podcasts, media, and social media. By investing dedicated time and energy in building up the profile of the data science team, it’s more likely that candidates will reach out to your company seeking data science opportunities. When looking for a diverse set of talent, the search an be difficult as data science is a male dominated field. As a result, traditional recruiting paths will continue to reflect this bias. Reaching out and building relationships with groups such as Women in Data Science, can help broad the pipeline of talent you attract. Defining Roles and Responsibilities Good candidates are more likely to apply for roles that have a clear job description, including a list of potential data science use cases, a list of required skills and tech stack, and a summary of the day-to-day work, as well as insights into the interviewing process and time lines. Crafting specific, accurate job descriptions is a critical—if often overlooked—aspect of attracting candidates. The more information and clarity you provide up front, the more likely it is that candidates have sufficient information to decide if it’s a suitable role for them and if they should go ahead with the application or not. If you’re struggling with creating this, you can start with an existing job description template and then customize it in accordance with the needs of the team and company. It's also critical to not over populate a job description with every possible skill or experience you hope a candidate brings. That will narrow your potential applicant pool. Instead focus on those skills and experiences that are absolutely critical. The right candidate will be able to pick up other skills on the job. It can be useful for the job description to include links to any recent publications, blogs, or interviews by members of the data science team. These links provide additional details about the type of work your team does and also offer candidates a glimpse of other team members. Here are some job description templates for the different roles in a data science team: Interviewing process When compared to software engineering interviews, the interview process for data science roles is still very unstructured, and data science candidates are often uncertain about what the interview process involves. The professional position of data scientist has only existed for a little over a decade, and in that time, the role has evolved and transformed, resulting in even newer, more specialized roles, such as data engineer, machine learning engineer, applied scientist, research scientist, and product data scientist. Because of the diversity of roles that could be considered data science, it’s important for a data science manager to customize the interviewing process depending on the specific profile they’re seeking. Data scientists need to have expertise in multiple domains, and one or more second-round interviews can be tailored around these core skills:
Given how tight the job market is for data science talent, it’s important to not over complicate the process. The more steps in the process, the longer it will take and the higher the likelihood you will lose viable candidates to other offers. So be thoughtful in your approach and evaluate it periodically to align with the market. Types of Data Science Interviews Interviews are often a multistep process and can involve multiple steps of assessments. Screening Interviews To save time, one or more screening rounds can be conducted before inviting candidates for second-round interviews. These screening interviews can take place virtually and involve an assessment of essential skills, like programming and machine learning, along with a deep dive into the candidate’s experience, projects, career trajectory, and motivation to join the company. These screening rounds can be conducted by the data science team itself or outsourced to other companies, like HackerRank, HackerEarth, Triplebyte, or Karat. Onsite Interviews Once candidates have passed the screening interviews, the top candidates will be invited to a second interview, either virtually or in person. The data science manager has to take the lead in terms of coordinating with internal interviewers to confirm the schedule for the series of interviews that will assess the candidate’s skills, as described earlier. On the day of the second-round interviews, the hiring manager needs to help the candidate feel welcome and explain how the day will proceed. Some companies like to invite candidates to lunch with other team members, which breaks the ice by allowing the candidate to interact with potential team members in a social setting. Each interview in the series should start by having the interviewer introduce themself and provide a brief summary of the kind of work they do. Depending on the types of interviews and assessments the candidate has already been through, the rest of the interview could focus on the core skill set to be evaluated or other critical considerations. Wherever possible, interviewers should offer the candidate hints if they get stuck and otherwise try to make them feel comfortable with the process. The last five to ten minutes of each interview should be reserved for the candidate to ask questions to the interviewer. This is a critical component of second-round interviews, as the types of questions a candidate asks offer a great deal of information about how carefully they’ve considered the role. Before the candidate leaves, it’s important for the recruiter and hiring manager to touch base with the candidate again, inquire about their interview experience, and share time lines for the final decision. Technical Assessment It is common for there to be some sort of case study or technical assessment to get a better understanding of a candidate’s approach to problem solving, dealing with ambiguity and practical skills. This provides the company with good information about how the candidate may perform in the role It also is an opportunity to show the candidate what type of data and problems they may work on when working for you. Evaluating candidates After the second-round interviews and technical assessment, the hiring manager needs to coordinate a debrief session. In this meeting, every interviewer shares their views based on their experience with the candidate and offers a recommendation if the candidate should be hired or not. After obtaining the feedback from each member of the interview panel, the hiring manager also shares their opinion. If the candidate unanimously receives a strong hire or a strong no-hire signal, then the hiring manager’s decision is simple. However, there may be candidates who perform well in some interviews but not so well in others, and who elicit mixed feedback from the interview panel. In cases like this, the hiring manager has to make a judgment call on whether that particular candidate should be hired or not. In some cases, an offer may be extended if a candidate didn’t do well in one or more interviews but the panel is confident that the candidate can learn and upskill on the job, and is a good fit for the team and the company. If multiple candidates have interviewed for the same role, then a relative assessment of the different candidates should be considered, and the strongest candidate or candidates, depending on the number of roles to be filled, should be considered. While most of the interviews focus on technical data science skills, it’s also important for interviewers to use their time with the candidate to assess soft skills, like communication, clarity of thought, problem-solving ability, business sense, and leadership values. Many large companies place a very strong emphasis on behavioral interviews, and poor performance in this interview can lead to a rejection, even if the candidate did well on the technical assessments. Job Offer After the debrief session, the data science manager needs to make their final decision and share the outcome, along with a compensation budget, with the recruiter. If there’s no recruiter involved, the manager can move directly to making the candidate an offer. It’s important to move quickly when it comes to making and conveying the decision, especially if candidates are interviewing at multiple companies. Being fast and flexible in the hiring process gives companies an edge that candidates appreciate and take into consideration in their decision-making process. Once the offer and details of compensation have been sent to the candidate, it’s essential to close the offer quickly to prevent candidates from using your offer as leverage at other companies. Including a deadline for the offer can sometimes work to the company’s advantage by incentivizing candidates to make their decision faster. If negotiations stretch and the candidate seems to lose interest in the process, the hiring manager should assess whether the candidate is really motivated to be part of the team. Sometimes, it may move things along if the hiring manager steps in and has another brief call with the candidate to help remove any doubts about the type of work and projects. However, additional pressure on the candidates can often work to your disadvantage and may put off a skilled and motivated candidate in whom the company has already invested a lot of time and money. Conclusion In this article, you’ve looked at an overview of the process of hiring a data science team, including the roles and skills you might be hiring for, the interview process, and how to evaluate and make decisions about candidates. In a highly competitive data science job market, having a robust pipeline of talent, and a fast, fair, and structured hiring process can give companies a competitive edge. Related Blogs Published by Domino Data Lab Reproducibility is a cornerstone of the scientific method and ensures that tests and experiments can be reproduced by different teams using the same method. In the context of data science, reproducibility means that everything needed to recreate the model and its results such as data, tools, libraries, frameworks, programming languages and operating systems, have been captured, so with little effort the identical results are produced regardless of how much time has passed since the original project.
Reproducibility is critical for many aspects of data science including regulatory compliance, auditing, and validation. It also helps data science teams be more productive, collaborate better with nontechnical stakeholders, and promote transparency and trust in machine learning products and services. In this article, you’ll learn about the benefits of reproducible data science and how to ingrain reproducibility in every data science project. You’ll also learn how to cultivate an organizational culture that promotes greater reproducibility, accountability, and scalability. What does it mean to be reproducible? Machine learning systems are complex, incorporating code, data sets, models, hyperparameters, pipelines, third-party packages, model training and development configurations across machines, operating systems, and environments. To put it simply, reproducing a data science experiment is difficult if not impossible if you can’t recreate the exact same conditions used to build the model. To do that, all artifacts have to be captured and versioned in an accessible repository. That way when a model needs to be reproduced, the exact environment, using the exact training data and code, within the exact package combination can be recreated easily. Too often it's an archeological expedition that can take weeks or months (or potentially never) when the artifacts are not captured at the time of creation. While the focus on reproducibility is a phenomenon in data science, it has been a cornerstone of scientific research across all kinds of industries, including clinical and life sciences, healthcare, and finance. If your company is unable to produce consistent experimental results, that can significantly impact your productivity, waste valuable resources, and impair decision-making. Situations Where Reproducibility Matters In data science, reproducibility is especially vital for data scientists to apply the experimental findings to their own work. Regulatory Compliance In highly regulated industries like insurance, finance and life sciences, all aspects of a model have to be documented and captured to provide full transparency, justification and validation on how models are developed and used inside an organization. This includes the type of algorithm being used, why the algorithm has been selected and how the model has been implemented within the business. A big part of complying involves being able to exactly reproduce the results of a model at any time. Without a system for capturing the artifacts, code, data, environment, packages and tools used to build a model this can be a time consuming, difficult task. Model Validation In all industries models should be validated prior to deployment to ensure the results are repeatable, understood and the model will achieve its intended purpose. Too often this is a time intensive process with validation teams having to piece together the environment, tools, data and other artifacts that were used to create the model, which slows down moving a model into production. When an organization is able to reproduce a model instantly, validators can focus on their core function of ensuring the model is robust and accurate. Collaboration Data science innovation happens when teams are able to collaborate and compound knowledge. It doesn’t happen when they have to spend time painstakingly recreating a prior experiment or accidentally duplicate work. When all work is easily reproducible, and easily searched, it's easy to build on prior work to innovate. It also means that as team staffing changes, institutional knowledge doesn’t disappear. Ingraining Reproducibility in Data Science Projects Instilling a culture of reproducibility in data science across an organization requires a long-term strategy, technology investment, and buy-in from data and engineering leadership. In this section, you’ll learn about a few established best practices for conducting and promoting reproducible data science work in your industry. Version Control Version control refers to the process of tracking and managing changes to artifacts, like code, data, labels, models, hyperparameters, experiments, dependencies, documentation, as well as environments for training and inference. The building blocks of version control for data science are more complex than software projects, making reproducibility that much more difficult and challenging. For code, there are multiple platforms, like GitHub, GitLab, and Bitbucket, that can be used to store, update, and track code, like Python scripts, Jupyter Notebooks, and configuration files, in common repositories. However that isn’t sufficient. Datasets need to be captured and versioned as well. So do the environments, tools and packages. This is because code may or may not run the same on a different version of Python or R, for example. Data may have changed even if pulled with the same parameters. Similarly capturing different versions of models and corresponding hyperparameters for each experiment is important to reproduce and replicate the results of a winning model that might be deployed to production. Reproducing end-to-end data science experiments is a complex, technical challenge that can be achieved much more efficiently using platforms like Domino’s Enterprise MLOps platform which eliminates all manual work and ensures reproducibility at scale. Scalable Systems Building accurate and reproducible data science models requires robust and scalable infrastructure for data storage and warehousing, data pipelines, feature stores, model stores, deployment pipelines, and experiment tracking. For machine learning models that serve predictions in real time, the importance of reproducibility is even higher in order to quickly resolve bugs and performance issues. End-to-end machine learning pipelines involve multiple components, and an organizational strategy for reproducible data science work must carefully plan for the tooling and infrastructure to enable it. Engineering reproducible workflows requires sophisticated tooling to encompass code, data, models, dependencies, experiments, pipelines, and runtime environments. For many organizations, it makes sense to buy (vs. build) such scalable workflows focused on reproducible data science. Conclusion Reproducible research is a cornerstone of scientific research. Reproducibility is especially significant for cross-functional disciplines like data science that involve multiple artifacts, like code, data, models, and hyperparameters, as well as a diverse set of practitioners and stakeholders. Reproducing complex experiments and results is, therefore, essential for teams and organizations when making important decisions like which models to deploy, identifying root causes when the models break down, and building trust in data science work. Reproducing data science results requires a complex set of processes and infrastructure that is not easy or necessary for many teams and companies to build in-house. Related Blogs Published by Unbox.ai Introduction
Machine learning models, especially deep neural networks, are trained using large amounts of data. However, for many machine learning use cases, real-world data sets do not exist or are prohibitively costly to buy and label. In such scenarios, synthetic data represents an appealing, less expensive, and scalable solution. Additionally, several real-world machine learning problems suffer from class imbalance—that is, where the distribution of the categories of data is skewed, resulting in disproportionately fewer observations for one or more categories. Synthetic data can be used in such situations to balance out the underrepresented data and train models that generalize well in real-world settings. Synthetic data is now increasingly used for various applications, such as computer vision, image recognition, speech recognition, and time-series data, among others. In this article, you will learn about synthetic data, its benefits, and how it is generated for different use cases. What is synthetic data? Synthetic data is a form of data augmentation that is commonly used to address overfitting deep learning models. It’s generated with algorithms as well as machine learning models to have similar statistical properties as the real-world data sets. For data-hungry deep learning models, the availability of large training data sets is a massive bottleneck that can often be solved with synthetic data. Additionally, synthetic data can be used for myriad business problems where real-world data sets are missing or underrepresented. Several industries—like consumer tech, finance, healthcare, manufacturing, security, automotive, and robotics—are already benefiting from the use of synthetic data. It helps avoid the key bottleneck in the machine learning lifecycle of the unavailability of data and allows teams to continue developing and iterating on innovative data products. For example, building products related to natural language processing (NLP), like search or language translation, is often problematic for low-resource languages. Synthetic data generation has been successfully used to generate parallel training data for training deep learning models for neural machine translation. Generating synthetic data for machine learning There are several standard approaches for generating synthetic data. These include the following:
Types of synthetic data Synthetic data can be classified into different types based on their usage and the data format. Generally, it falls into one of two categories:
Popular types of synthetic data, classified according to the data type, include the following:
Synthetic text finds its use in applications like language translation, content moderation, and product reviews. Synthetic images are used extensively for purposes like training self-driving cars, while synthetic audio and video data is used for applications including speech recognition, virtual assistants, and digital avatars. Synthetic time-series data are used in financial services to represent the temporal aspect of financial data, like stock price. Finally, synthetic tabular data is used in domains like e-commerce and fraud. Techniques for generating synthetic data Generating synthetic data can be very simple, such as adding noise to data samples, and can also be highly sophisticated, requiring the use of state-of-the-art models like generative adversarial networks. In this section, you’ll review two chief methods for generating synthetic data for machine learning and deep learning applications. Statistical methods In statistics, data samples can be assumed to be generated from a probability distribution with certain characteristic statistical features like mean, variance, skew, and so on. For instance, in the case of anomaly detection, one assumes that the nonanomalous samples belong to a certain statistical distribution while the anomalous or outlier samples do not correspond to this data distribution. Consider a hypothetical machine learning example of predicting the salaries of data scientists with certain years of experience at top tech companies. In the absence of real-world salary data, which is a topic considered taboo, synthetic salary data can be generated from a distribution defined by the few real-world salary public reports on platforms like Glassdoor, LinkedIn, or Quora. This can be used by recruiters and hiring teams to benchmark their own salary levels and adjust the salary offers to new hires. Deep learning-based methods As the complexity of the data increases, statistical-sampling-based methods are not a good choice for synthetic data generation. Neural networks, especially deep neural networks, are capable of making better approximations of complex, nonlinear data like faces or speech. A neural network essentially represents a transformation from a set of inputs to a complex output, and this transformation can be applied on synthetic inputs to generate synthetic outputs. Two popular neural network architectures for generating synthetic data are variational autoencoders and generative adversarial networks, which will be discussed in detail in the next sections. Variational autoencoders Variational autoencoders are generative models that belong to the autoencoder class of unsupervised models. They learn the underlying distribution of a data set and subsequently generate new data based on the learned representation. VAEs consist of two neural networks: an encoder that learns an efficient latent representation of the source data distribution and a decoder that aims to transform this latent representation back into the original space. The advantage of using VAEs is that the quality of the generated samples can be quantified objectively using the reconstruction error between the original distribution and the output of the decoder. VAEs can be trained efficiently through an objective function that minimizes the reconstruction error. VAEs represent a strong baseline approach for generating synthetic data. However, VAEs suffer from a few disadvantages. They are not able to learn efficient representations of heterogeneous data and are not straightforward to train and optimize. These problems can be overcome using generative adversarial networks. Generative adversarial networks GANs are a relatively new class of generative deep learning models. Like VAEs, GANs are based on simultaneously training two neural networks but via an adversarial process. A generative model, G, is used to learn the latent representation of the original data set and generate samples. The discriminator model, D, is a supervised model that learns to distinguish whether a random sample came from the original data set or is generated by G. The objective of the generator G is to maximize the probability of the discriminator D, making a classification error. This adversarial training process, similar to a zero-sum game, is continued until the discriminator can no longer distinguish between the original and synthetic data samples from the generator. GANs originally became popular for synthesizing images for a variety of computer-visionproblems, including image recognition, text-to-image and image-to-image translation, super resolution, and so on. Recently, GANs have proven to be highly versatile and useful for generating synthetic text as well as private or sensitive data like patient medical records. Synthetic data generation with Openlayer Openlayer is a machine learning debugging workspace that helps individual data scientists and enterprise organizations alike to track and version models, uncover errors, and generate synthetic data. It is primarily used to augment underrepresented portions or classes in the original training data set. Synthetic data is generated from existing data samples, and data-augmentation tests are conducted to verify whether the model’s predictions on the synthetic data are the same as for the original data. Conclusion In this article, you learned about synthetic data for machine learning and deep learning applications. In the absence of real-world data, as well as other pertinent issues like privacy concerns or the high costs of data acquisition and labeling, synthetic data presents a versatile and scalable solution. Synthetic data has found mainstream acceptance in a number of domains and for a variety of data types, including text, audio, video, time series, and tabular data. You explored these different types of synthetic data and the various methods for generation. These include statistical approaches as well as neural network–based methods like variational autoencoders and generative adversarial networks. Then you walked through a brief tutorial for generating synthetic data using deep learning methods. Finally, you saw the utility of third-party synthetic data generation products such as Openlayer, which can help companies rapidly scale their synthetic data requirements and accelerate model development and deployment. Related Blogs Published by Unbox.ai Data drift refers to the phenomenon where the distribution of live, real-world data differs or “drifts” from the distribution of data used to train a machine learning model. When data drift occurs, the performance of machine learning models in production degrades, resulting in inaccurate predictions. This reduction in the model’s predictive power can adversely impact the expected business value from the investment in training. If data drift is not identified in time, the machine learning model may become stale and eventually useless.
In this article, you’ll learn more about data drift, exploring why and in what ways it occurs, its impact, and how it can be mitigated and prevented. The Importance of Detecting Data Drift Machine learning models operate in a dynamic environment but are trained on data from a fixed, statistical distribution. Data drift can occur due to a variety of reasons, including seasonal variations, new product features, changes in customer behavior, or even rare events like the Covid-19 pandemic. Data drift is a critical challenge for production machine learning systems. It occurs when the statistical distribution of the target or real-world data diverges significantly from the statistical properties of the data on which the model was trained. This hurts model performance on new unseen data during real-world inference, leading to inaccurate predictions, poor customer experience, and monetary and reputational costs for the business. If undetected, data drift can cause multiple problems besides the obvious loss in model performance. It leads to greater MLOps challenges and technical burden for teams such as identifying data drift, conducting root cause analysis for input features correlated with data drift, data labeling, active learning, retraining, and redeploying the updated models to production. This is a significant investment of time and resources that can be avoided if machine learning models are closely monitored and a strategy for detecting and fixing data drift is in place. How to Identify Data Drift It is common to assume that a loss in model performance may be due to data drift. However, before arriving at this conclusion, it is important to assess data quality. Target data distributions could change due to a new set of users, a feature or product update, or even something as simple as a bug or formatting error in the code or data. After data-quality issues are ruled out, data drift can be examined in more detail. Fundamentally, data drift implies a change in the statistical distribution of target data from that of the training data. Thus, the simplest way to identify data drift is to compare summary statistics (like mean, variance, Kullback–Leibler divergence, and so on) of a carefully sampled subset of the target data against the training data. Other statistical measures include comparing the number of outliers in the two distributions or using the Kolmogorov–Smirnov test. Analyzing the correlations between input features and model predictions for both the data distributions can also shed some light. Model-based machine learning techniques can also be used to identify data drift. A sample of data from the reference or training distribution can be labeled as 0, and an equivalent sample from the target distribution can be labeled as 1. Based on this input data, a simple binary classification model can be trained to discriminate between the two types of data distributions. If the model can distinguish between the two data sets, this implies that data drift is present. Alternatively, if the model fails to discriminate between the data sets, then no data drift is evident. Using a machine learning–based approach captures nonlinear relationships better and can help catch data drift where the above statistical methods might fail. What are the different kinds of Data Drift? The change in the statistical distribution between the target and training data manifests in different forms of data drift that are observed in real-world machine learning systems: Covariate shift (feature drift) Covariate drift refers to a data drift that is correlated with a shift in the independent variables or input features. The relationship between the features and target variables is unchanged, but the change in a few features leads to covariate drift. Covariate drift can occur due to sample selection bias and is frequently observed in nonstationary environments. Concept drift Concept drift is associated with a change in the relationship between the independent variables and the target variables. For instance, a particular machine learning model may suffer from concept drift when it is launched in a new geography where the customer behavior is markedly different from the behavioral data from the original geography that was used to train the models. Although the set of input features and the data distributions may remain the same, the model may not make any useful predictions and is rendered obsolete. How can you mitigate and prevent data drift? Once data drift is confirmed as real and significant after rigorous analysis and statistical tests as described above, it is important to address it sooner than later. Here are a few strategies for doing so. Data labeling Labeling the new target data is the first step toward addressing data drift. A carefully selected batch of the test data can be sampled and sent to subject matter experts for data annotation. Thereafter, this labeled target data from the modified data distribution can be incorporated into the original data distribution to ameliorate the impact of data drift. Periodic model training With newly labeled target data, the model can be retrained on data from both the original distribution and the test distribution. As the new model is now trained to recognize data from the modified target distribution, it typically does a better job in production than the original model. However, a model might need to be trained multiple times, depending on the rate of data drift, to capture the new patterns from the test data. Model recalibration With repeated model retraining, the training pipeline, model architecture, and hyperparameters may remain the same, with the only difference being the change in training data. However, if data drift is not taken care of with periodic retraining, it might be prudent to train the model from scratch with a fresh approach and insights learned from efforts focused on evaluating and mitigating data drift. The new model may be trained differently from the original one in a number of ways:
Continuous monitoring Continuous monitoring of machine learning model performance is critical to keep track of the quality of the model in production. Model performance metrics like true positives, false positives, precision, recall, F1-score, and AUC-ROC curves can be periodically assessed. After thresholds for such performance metrics are carefully selected, alerts can be triggered using platforms like Grafana or Prometheus or by using third-party-managed MLOps platforms. Apart from output metrics, other things to monitor include any data issues or inconsistencies, bias in training data, and explainability metrics. Conclusion The phenomenon of data drift afflicts most machine learning models in production, arising from various reasons due to the dynamic nature of real-world data, seasonal trends, changes in product features, software- or data-related issues, changes in customer behavior due to new competition or legislation, and even rare black swan events like the Covid-19 pandemic. Data drift can be of different types, depending on whether the relationship between the independent features and the target variables changes or not. This article has equipped you to know what data drift looks like and provided a list of best practices for identifying and mitigating it before it becomes a major MLOps challenge and renders the machine learning model unfit for its intended business purpose. Related Blogs |
Archives
April 2025
Categories
All
Copyright © 2025, Sundeep Teki
All rights reserved. No part of these articles may be reproduced, distributed, or transmitted in any form or by any means, including electronic or mechanical methods, without the prior written permission of the author. Disclaimer
This is a personal blog. Any views or opinions represented in this blog are personal and belong solely to the blog owner and do not represent those of people, institutions or organizations that the owner may or may not be associated with in professional or personal capacity, unless explicitly stated. |