Introduction Metrics are widely used by data, product, strategy, and business teams to capture and summarize data about various aspects of user behavior, product performance, and the health of the business. Metrics like annual recurring revenue (ARR), gross merchandise volume (GMV), customer acquisition cost (CAC), lifetime value (LTV), and net promoter score (NPS) are common parlance in product startups and large tech companies. Technical and business stakeholders need the information collected in metrics to make sense of their product and business performance so that they can make data-driven decisions. This makes tracking metrics essential to detect potential issues, plan new business initiatives, ensure growth, and share pertinent information with regulatory bodies as well as shareholders. A change in growth metrics can deeply impact investor confidence and the perception of the company in public markets. For instance, the stock prices of Meta and Netflix recently plummeted after they reported declines in key growth metrics like daily active users (DAU) and number of subscribers, respectively. For tech companies at this scale, staying on top of metrics is critical and requires a sophisticated approach to data engineering, data governance, and data democratization. In this article, you’ll learn about how metrics are defined, used, and managed at different types of large tech companies. How Do Large Companies Define and Use Metrics? Though large companies are equally reliant on metrics to drive their decision-making, what they measure and how they measure it will vary by company. The following are examples of the metrics strategies used at Uber, Airbnb, Spotify, and Netflix. Uber Uber’s core business is a marketplace that connects riders with drivers in real time at a global scale. Its product teams rely most heavily on metrics related to trips taken and driver experience, such as “driver acceptance rate” and “completed trips.” It also uses map data to determine driver ETA and pickup and dropoff spots. Because disparate versions of the same metrics were being used across business teams, leading to ineffective and poor decision-making, Uber implemented changes to improve metric standardization. The company built a unified metric platform called uMetric to enforce a strict one-to-one mapping from business logic to metrics without any discrepancies. uMetric is built on engineering solutions that democratize data and provide a clear understanding of the entire metric lifecycle so that the data can be better used in machine learning models. The platform enables access to metrics across their entire lifecycle, from definition, discovery, and planning to computation, quality, and consumption. Clear and unambiguous definition of metrics is a key pillar of the platform, and metrics can be defined by any author without any duplication. In uMetric, a metrics definition model is designed on the following core principles:
Using this definition model is not enough to ensure metric standardization, however. Additional policies and solutions focused on data governance, data quality, and access control are necessary to scale the platform across the company. Airbnb Similar to Uber, the vacation rental marketplace Airbnb built a metrics platform called Minerva to achieve metric consistency and serve as the ground truth for data analytics, reporting, and experimentation. Airbnb built its foundation of data on lodgings and vacation rentals on tables referred to as `core_data`. As the company grew, though, teams built separate tables on top of `core_data` without any information about data lineage or correspondence between these tables. This led to conflicting results and insights, which confounded data-driven decision-makers. Minerva was designed to solve these problems. It takes facts and dimension tables as inputs, optimizes the data through denormalization, then sends the data to downstream applications. Minerva acts as the metric store for more than 30,000 metrics produced by more than 200 stakeholders across the organization. As uMetric does, Minerva supports the end-to-end lifecycle of a metric from definition to deprecation and powers the whole tech stack of Airbnb. Metrics, dimensions, and metadata are defined and stored in a central GitHub repository that is accessible by any stakeholder in the company. Once defined, metrics can be used anywhere via dashboarding tools or A/B experimentation frameworks. All the metrics defined in Minerva are indexed in Dataportal, Airbnb’s internal data catalog. A deeper dive into the metrics is facilitated by another tool called Metric Explorer, which is designed for both technical and non-technical users. Minerva powers several downstream applications:
Spotify The Spotify global audio streaming service also developed an in-house metrics catalog, but as part of a modern A/B testing experimentation platform in order to create custom metrics at scale. Spotify’s metrics catalog runs SQL pipelines to ingest metrics into a data warehouse. This enables the collected metrics to be almost instantly stored, managed, and served to the experimentation platform. A key feature of the metrics catalog is that it enables self-service. Teams can write SQL queries to define metrics, and the rest is taken care of by the managed system. To address the problem of lack of metrics standardization and metrics duplication, Spotify built a Metrics Hub. In addition to providing a single source of truth, the hub also focused on creating symmetry between offline and online use of metrics. This feature makes it easy to take any metric definition and deploy it seamlessly in different environments to power experimentation and machine learning use cases. In typical A/B testing experiments, users are split into distinct groups. Consider a hypothetical example in which Spotify wants to A/B test whether podcasts are more popular in the 30- to 39-year age group or the 20- to 29-year age group. This experiment requires a set of user-level input metrics like demographics, daily or weekly listening time, number of songs listened to, and number of podcasts listened to. Spotify’s metric pipeline integrates these metrics with the experimental group each user belongs to. This data is combined and stored in a data warehouse, then accessed with an API that allows users to query data without needing to understand the underlying storage. A metrics catalog enables multiple stakeholders to access and analyze data, which helps an organization to more efficiently and quickly improve the customer experience. Netflix As a global entertainment platform that serves real-time video content to millions of users, Netflix needs to mine numerous insights on metrics like user engagement, viewership, and video streaming quality. It uses the data it gathers to make recommendations to users based on factors like watch history and demographics. Netflix powers multiple experiments in parallel through a centralized A/B experimentation platform. Similar to Spotify, this platform has a metrics catalog at its core. A centralized metrics repository built using Python, Metrics Repo is home to diverse user-level as well as technical metrics like streaming time, play delay, and retention rate. Metrics Repo provides a unified platform for metric definitions that are typically defined and engineered differently by various business teams. In this modular architecture, data scientists can add metric definitions directly and join data tables to perform metric computations. Analytical reports can be calculated on demand without affecting the underlying metrics. Metrics Repo serves as a single source of truth for statistical analysis and causal inference based on these metrics and visualization of corresponding results and insights. This architecture provides a transparent metric lineage and definition, ensuring greater trust in the experimental results. This is critical for enabling rapid mining of insights, development of new products and strategies, and executive-level decision-making. Conclusion Metrics provide a data-driven summary of key business goals and operational performance. Product managers, data analysts, and business leaders use them to assess and track the growth of the business, as well as devise new products and strategies. Because metrics are so crucial to the health and growth of a business, stakeholders need a clearly defined way to collect and measure metrics in order to improve their decision-making. You’ve learned about how data teams define and use metrics at four top tech companies: Uber, Airbnb, Spotify, and Netflix. Uber and Airbnb built an internal metrics platform that manages the entire lifecycle of their metrics. Spotify and Netflix, meanwhile, built metrics catalogs to form a central pillar of a modular and scalable experimentation platform. These different solutions achieve the same goal of making necessary data cohesive, consistent, and actionable. Related Blogs
Comments
|
Archives
September 2024
Categories
All
Copyright © 2024, Sundeep Teki
All rights reserved. No part of these articles may be reproduced, distributed, or transmitted in any form or by any means, including electronic or mechanical methods, without the prior written permission of the author. Disclaimer
This is a personal blog. Any views or opinions represented in this blog are personal and belong solely to the blog owner and do not represent those of people, institutions or organizations that the owner may or may not be associated with in professional or personal capacity, unless explicitly stated. |