Context-dependent neural representation of time

Sundeep Teki

Sir Henry Wellcome Fellow
Auditory Neuroscience Group
University of Oxford

Outline

Introduction

• **Expt. 1**: Temporal context-dependent perception of single time intervals (fMRI)

• **Expt. 2**: Temporal context-dependent working memory for single time intervals (Behaviour & fMRI)

• **Expt. 3**: Learning the temporal structure of natural sequences (Electrophysiology)

Discussion

Why study timing?

Important for accurate sensorimotor processing as well as higher cognitive functions.

• Natural sensory signals e.g. speech and music show rich temporal dynamics.

• Timing is integral for planning smooth, coordinated movements e.g. dancing.

• No peripheral receptors for time unlike for sensory signals.

• Timing deficits co-occur with several neurological disorders e.g. Parkinson's.

Models of Timing

Dedicated models:

Timing is mediated by dedicated modules in the brain.

e.g. cerebellum, basal ganglia, supplementary motor areas visual, auditory and somatosensory cortex parietal and frontal cortex

Intrinsic models:

Timing is an intrinsic computation that emerges from local network dynamics.

cf. Buonomano group

Context

Several factors modulate our perception of time (different aspects of timing; at different timescales etc.):

- Attention
- Memory
- Reward
- Decisions
- Movement
- Emotion
- Temporal context

1. Temporal context-dependent perception of single time intervals

Duration-based timing

Encoding absolute duration of individual time intervals (ΔTi)

Duration-based timing

Patients with SpinoCerebellar Ataxia Type 6 with lesions to superior cerebellum

Beat-based timing

Timing of intervals relative to a regular beat (ΔTi / Theat)

Paradigm

Sequence A: Irregular with 15% average jitter; deltaT = 30% of IOI

Task: $T_n > or < T_{n-1}$

Sequence B: Regular with an isochronous beat; deltaT = 15% of IOI

Irregular > Regular (measure of absolute timing)

Regular > Irregular (measure of relative timing)

Behavior

Mean 81.53% 84.72% SEM ± 12.28% ±10.64% **1438 1275** ± 297 ms ± 312 ms

fMRI results

A Activations for absolute, duration-based timing

B Activations for relative, beat-based timing

Duration-based timing

x = -10 to 10 mm

Beat-based timing

x = -3 to 11 mm

Network architecture

Teki et al., 2012 Frontiers
Allman, Teki et al., 2014 Ann Rev Psychol
cf. Peter Strick for cerebellum-striatum connections
cf. Chen et al., 2014 Nat. Neurosci. for CB-BG physiology

2. Temporal context-dependent working memory for single time intervals

Models of working memory

Bays & Husain (2008) Ma et al. (2014)

From single intervals to sequences

- discrimination task
- binary/categorical measure
- no variation of memory load
- isolated intervals; no variation of rhythmic structure

Paradigm

Perceptual time matching response = T_R (adjusted for reaction time)

Timing error response = $T_R - T_{probe}$

Precision of WM for time = $1/STD (T_R - T_{probe})$

Conditions

1: 'SUB'

- No. of intervals:

- IOI:

500-600 ms

- Jitter levels: 5-10%, 20-25%, 35-40%, 50-55%

2: 'SUPRA'

- No. of intervals:

1.0 - 1.2 s **- IOI:**

- Jitter levels: 5-10%, 20-25%, 35-40%, 50-55%

Precision vs. Jitter

Significant effect of jitter for SUB (p=0.01) but not SUPRA (p=0.65) N=10 each

Conditions

1: 'SUB'

- No. of intervals: 4

- IOI: 500-600 ms

- Jitter levels: 5-10%, 20-25%, 35-40%, 50-55%

2: 'SUPRA'

- No. of intervals: 4

- IOI: 1.0 - 1.2 s

- Jitter levels: 5-10%, 20-25%, 35-40%, 50-55%

3: 'Memory load'

- No. of intervals: 1 - 4

- IOI: 500-600 ms

- Jitter levels: 5-10%, 20-25%, 35-40%, 50-55%

Precision vs. Load

Significant effect of WM load (p=0.01) N = 8

fMRI

To examine brain areas that encode WM for time as a function of:

Temporal regularity (fixed WM load)
Memory load (fixed regularity)

WM load (# intervals)		Temporal regularity (% jitter)		
	4	5-10%,	20-25%,	35-40%, 50-55%
	3		20-25%	
	2		20-25%	
	1		20-25%	

CAUDATE NUCLEUS

Effect of temporal regularity

PUTAMEN

Effect of working memory load

3. Learning the temporal structure of natural sequences

Paradigm

Training phase:

Expose ferrets to a sequence of artificial vowels with different frequencies, ABCD and record from auditory cortex using multi-channel electrodes (n = 32).

Test phase:

Examine whether neural responses show evidence of generalization when ABCD is later presented with different acoustic manipulations e.g.

```
timbre,
timing (absolute or relative),
predictability,
background noise.
```

Paradigm

Training phase

Test phase

A B C D (t/2)

A B C D

↔

A B C D (2t)

A B C D

(1.5t, 0.5t, 1.5t, 0.5t)

A B C D

(0.5t, 1.5t, 0.5t, 1.5t)

Generalization to novel timing structure

(n = 58 neurons in primary auditory cortex)

General conclusions

- Neural representation of time is context-dependent.
- Temporal context modulates perception and working memory for time.
- Basal ganglia and cerebellum are specialized for temporal context-dependent perception and memory for time.
- Focus on representation of time at the level of sequences vs. intervals.
- Insights from neural population recordings in candidate timing areas
 e.g. sensory cortex, basal ganglia, cerebellum etc.

Discussion

Highlight the context

that modulates timing in your study design

Duration of time intervals

Focus on time intervals observed in natural sensory environment, motion patterns etc.

Neural code for a single time interval vs. sequence of temporal patterns

Examine representation of time at the single interval level as well as at the level of sequences (both within and across sequences).

Dedicated vs. intrinsic models

Timing maybe an intrinsic network computation but certain brain areas may be specialized for representing time in specific contexts.

Thank you!

Join the Timing Research Forum!

Website: <u>timingforum.org</u>

Twitter: @timingforum

Facebook: timingresearchforum

ResearchGate: Timing Research Forum (project)

Email: <u>trf@timingforum.org</u>

> 450 members; ~ 600 social media followers

Monthly newsletters, active social media presence

Timing resources, publications, meetings

Member-supported blogs

Submit abstracts for the 1st TRF Conference!

23-25 October, 2017: Conference to be held in Strasbourg, France.

May 1, 2017: Deadline for Abstracts & Symposia submissions.

Contact: Jenny Coull / Anne Giersch at

trf.strasbourg@orange.fr