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A. Introduction



Timing in the brain

Time is a fundamental aspect of brain function.
But no dedicated sensory apparatus for encoding time.

Natural stimuli like speech and music contain rich temporal structure.

Listening to rhythms with a strong beat synchronizes our movements.

Oscillatory signals support distinct brain functions and coordinate information transfer
underlying various perceptual, cognitive and sensorimotor tasks.

How do oscillatory signals particularly in the beta range (12-30 Hz) influence perception
and estimation of temporally structured events?



Beta activity

Beta linked to the motor system, involved in overt movement and motor imagery. Beta
power decreases before and during movement followed by a rebound.

Beta activity in motor areas is related to the maintenance of the current state of the
network as well as the expectancy of forthcoming events (Engel & Fries, 2010).

Beta mediates long-distance cortical coupling (Kopell et al., 2000)

Nested coupling between beta & gamma or delta & beta oscillations may facilitate
cross-modal interaction between sensory channels that process information on different

time scales.

What is the precise role of beta oscillations in non-motor circuits underlying cognitive
functions like timing and beat perception?



B. Role of beta oscillations in timing
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Fujioka et al. 2012
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Fujioka et al. 2015
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B1. Modulation of beta oscillations by temporal context



Fujioka et al., 2012

g 0 ¥ A=390ms ¥ f Bo

c

-

g -.05 \-.05
T -.10

®

5 Group average (Nn=12) =——

£

o

5 -.05

8

2 -10 |
=

x -.15 ¢t ] o
- 0 200 400 600 800

Time (ms)

g / .

I \-.05
£ 10 |
= |

S [ Group average =—

S 0 N & P 9

2 A PN

S - \\\\""“ %-.Os
sl \\SM!;&%\?

- vy A0
S = Individuals 15 |
- 0 200 400 600 800

Time (ms)

Human MEG

v At=585ms !

Group ave

~Individuals

200 400 600
Time (ms)

° 800

v At=390-780ms randomized

Group average

Individuals

200 400 800
Time (ms)

0 600

Induced beta

J. Neurosci.



Bartolo & Merchant, 2015
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B2. Sources of beta modulation
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Kulasekhar et al., 2016
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Teki et al., 2011
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B3. Delta-beta coupling in timing



Arnal et al., 2014
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Arnal et al., 2014
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C. Discussion



Summary

Beta activity is strongly associated with encoding of time intervals in isochronous
sequences during both passive listening, imagery and active timing tasks.

Induced beta activity decreases (desynchronization) after stimulus onset and then
increases (rebound) and peaks at the time of onset of the next sound event.

Beta activity is a marker of both endogenous (top-down) as well as exogenous
(bottom-up) processes underlying timing.

Sources of beta activity are widespread and include the auditory cortex as well as
coupled sensorimotor networks.

Delta phase-beta amplitude coupling reflects performance in a timing task, and could
used for accurate sensory selection in time.

Signatures of beta activity in isochronous sequences are disrupted in irregular sound
sequences.



Open questions

Causal architecture of beta-band networks during timing - i.e. what is the source of
beta activity (cf. Sherman et al., 2016 PNAS)?

What is the nature of functional connectivity between auditory and motor cortices

during timing?

Why is beta activity prominent only during regular sound sequences? How robust is
the beta response to temporal irregularities in the stimulus?

Are the beta sources underlying timing distinct for regular vs. irregular rhythms?
Does beta activity represent “when” or “what” information about an event?

What is the role of other oscillatory signals and their interaction with beta activity
during timing?



Testable hypotheses

Ho. Induced beta activity in auditory cortex is modulated by temporal irregularity.
Use sound sequences with parametric levels of temporal jitter.

Examine whether induced beta power and delta-phase & beta-amplitude coupling are
modulated parametrically as a function of the amount of temporal jitter.

Ho. Beta activity in the auditory cortex encodes maximum timing information.
Use a classifier approach to examine whether activity (beta/gamma) in auditory cortex,
motor cortex, SMA, cerebellum can decode stimulus features like regularity or rate.

Classification accuracy should be higher for trained musicians vs. non-musicians.

Ho. Beta activity represents both temporal (when) and categorical (what) information.
Use a balanced factorial design with orthogonal temporal and categorical factors to
examine whether induced beta activity represents when / what information.
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