

Do you remember the time?

Auditory Cognition Group Wellcome Trust Centre for Neuroimaging

Outline

- Timing and Time perception
- **II** Memory for Time
- **III** Psychophysics
- **IV** fMRI experiment
- V Summary

I. Timing and Time Perception

- Types of timing classifications/mechanisms?
 - Implicit vs. Explicit
 - Sub-second vs. Supra-second
 - Automatic vs. Cognitive
 - Duration-based vs. Beat-based
- Areas involved in perception of time?
 - Basal ganglia
 - Cerebellum
 - Supplementary Motor Area (SMA)
 - Pre-motor cortex (PMC)
 - Prefrontal cortex
 - Parietal cortex

Buhusi and Meck, 2005; Merchant et al., 2013; Allman et al., 2014

Beat-Based timing

Natural sound sequences have variable temporal structure and rhythmic context.

Grahn et al.: role of basal ganglia in beat perception

I. Duration-based timing

Grube et al.: implicate cerebellum in duration-based timing

Duration-based vs. Beat-Based

Duration-based vs. Beat-Based

Cerebellar network more involved in duration-based timing

Striato-thalamo-cortical network more involved in beat-based timing

II. Models of Working Memory

Shown for colour, orientation, pitch. Similar model for time intervals?

Bays & Husain (2008)

Bays et al (2009)

Kumar et al (2013)

II. Memory for Time

- discrimination task
- binary/categorical measure
- no variation of memory load
- isolated intervals; no variation of rhythmic structure
- Rao et al. (2001), Coull et al. (2008) show putamen activity related to WM

II. Precision

Precision: a continuous index that quantifies the fidelity of memory

10

Precision = 1/standard deviation

III. Psychophysics

Perceptual time matching response = T_R (adjusted for RTs) Timing error response = $T_R - T_{probe}$ Precision of WM for time = 1/STD ($T_R - T_{probe}$)

III. Experiments

1: 'SUB'

- No. of intervals: 4

- IOI: 500-600 ms

- Jitter levels: 5-10%, 20-25%, 35-40%, 50-55%

2: 'SUPRA'

- No. of intervals: 4

- IOI: 1.0 - 1.2 s

- Jitter levels: 5-10%, 20-25%, 35-40%, 50-55%

3: 'WM'

- No. of intervals: 1 - 4

- IOI: 500-600 ms

- Jitter levels: 5-10%, 20-25%, 35-40%, 50-55%

4: 'CUED'

- No. of intervals: 4

- IOI: 500-600 ms

- Jitter levels: 5-10%

- Cue: Valid (56.2%), Invalid (18.8%), Neutral (25%)

Exp 1 & 2: Precision vs. Rhythm

B (SUB/SUPRA)

Main effect of jitter (p < 0.02) for SUB but not SUPRA

Exp 3. Precision vs. WM load

• Main effect of WM load (adj. for jitter): p < 0.05

Exp 4. Precision vs. Cue

E (CUED)

- 75% cued trials; 75% cues were valid
 - No effect of cueing (p > 0.05)

IV. fMRI experiment

WM load (# intervals)		
	4	5-10%, 20-25%, 35-40%, 50-55%
	3	20-25%
	2	20-25%
	1	20-25%

Adapted experiments 1 and 3 for a parametric fMRI design to find regions:

- Activated as a function of no. of intervals
- Activated as a function of temporal regularity

(with fixed regularity)

(with fixed WM load)

IV. fMRI acquisition

Sparse sampling design:

- TR = 14.76s
- Response window = 2.5s
- Fixed latency from onset of delay period to scan acquisition
- 2 rhythm followed by 2 WM blocks: 32 trials per block

IV. fMRI analysis

- A priori hypotheses for cerebellum and basal ganglia
- 12 subjects so far (normal hearing, no current musical training)
- Standard pre-processing in SPM12, normalization using DARTEL
- Whole brain analysis; random effects design

Parametric analysis:

- (a) Effect of varying regularity (for fixed no. of intervals)
- (b) Effect of varying WM load (for fixed temporal regularity)

IV. Behaviour in fMRI: Rhythm

IV. Behaviour in fMRI: WM

IV. fMRI: effects of increasing jitter (fixed WM)

CEREBELLUM

T = 4.44

CAUDATE

T = 3.04

IV. fMRI: effects of decreasing jitter (fixed WM)

CAUDATE

T = 8.13

CEREBELLUM

$$T = 4.05$$

IV. fMRI: effects of increasing WM load (fixed jitter)

PARIETAL CORTEX

CEREBELLUM

$$T = 5.82$$
 $T = 3.59$

V. Summary

- Memory for time not studied for intervals in the context of sequences with more than one interval and with different temporal structures
- A new paradigm and measure of temporal memory.
 Characterized of memory for time intervals for sequences with different temporal structure inter-onset intervals working memory loads attentional conditions
- fMRI paradigm to investigate bases of memory for time in progress.

Preliminary analysis suggests:

Both cerebellum and striatum involved in encoding memory for time as a function of the rhythmic context (cf. Teki et al., 2012)

Parietal cortex and cerebellum involved in encoding memory for time as a function of increasing memory load.

Acknowledgments

Tim Griffiths

www.fil.ion.ucl.ac.uk/~tgriff www.fil.ion.ucl.ac.uk/~steki