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The physiological basis for musical hallucinations (MH) is not understood. One obstacle to

understanding has been the lack of a method to manipulate the intensity of hallucination

during the course of experiment. Residual inhibition, transient suppression of a phantom

percept after the offset of a masking stimulus, has been used in the study of tinnitus. We

report here a human subject whose MHwere residually inhibited by short periods of music.

Magnetoencephalography (MEG) allowed us to examine variation in the underlying oscil-

latory brain activity in different states. Source-space analysis capable of single-subject

inference defined left-lateralised power increases, associated with stronger hallucina-

tions, in the gamma band in left anterior superior temporal gyrus, and in the beta band in

motor cortex and posteromedial cortex. The data indicate that these areas form a crucial

network in the generation of MH, and are consistent with a model in which MH are

generated by persistent reciprocal communication in a predictive coding hierarchy.

ª 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Hallucinations are false percepts in the waking state that are

not consequences of stimuli in the external environment, and

can involve any sensorymodality.Musical hallucinations (MH)

are a type of auditory hallucination characterized by percep-

tion ofmusical sounds in the absence of any external source of

music. Their content is often familiar and can be instrumental,

vocal or both. While hallucinations of music can occasionally

result from focal brain lesions and psychiatric disorders
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Schott, 2006; Saba & Keshavan, 1997) the most common

cause is hearing loss in the absenceof other pathology (Berrios,

1990). This latter group raises the question of howhearing loss

alone can lead to thedevelopment of complexMH,which is the

focus of this study.

Although a number of case studies involvingMHhave been

reported in the literature (for reviews see Evers, 2006; Evers &

Ellger, 2004), there are only a few studies that have investi-
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brain, these studies have either compared brain activities in

the same subject but in two different sessions (Griffiths, 2000;

Kasai, Asada, Yumoto, Takeya, & Matsuda, 1999; Shoyama

et al., 2010) often separated by several days, or compared

brain activity across different population of subjects, with and

without hallucinations (Shinosaki et al., 2003; Vanneste, Song,

& De Ridder, 2013). A wide range of cortical and sub-cortical

areas, which are inconsistent across studies, have been

implicated in MH.

A possible contribution to the lack of converging results

amongst previous studies is the absence of a paradigm to

measure brain activity associated with MH in individual sub-

jects within a single session. Comparing across sessions may

highlight changes in neural activity associated with factors

other than hallucination intensity, and comparing across

subjects might fail to detect parts of the neural substrate that

show inter-individual variation or erroneously imply that

certain areas are involved in all subjects. Given the variation

in phenomenology in MH, and in subject factors such as

musical expertise, the possibility of such inter-individual

variation in neuro-anatomical substrate must be seriously

considered. We consider here whether a common physiolog-

ical mechanism might exist that could have different

anatomical instantiations to explain the variety of phenom-

enology and substrates previously reported.

Measuring the brain activity that changes with MH in the

same subject in the same session, requires a paradigm in

which the MH can be altered at defined times during the

course of the experiment. We assessed here whether residual

inhibition (RI), which has been successfully used in tinnitus

research (Feldmann, 1981; Roberts, 2007; Sedley, Teki, Kumar,

Barnes, et al., 2012), might also be applied to MH. RI involves

presenting an auditory ‘masker’ stimulus for a period of time,

and after this stimulus ends, there is a period of time in which

the phantom percept remains reduced in intensity. Con-

trasting this period of suppressed tinnitus with a nearby

period of unsuppressed tinnitus allowsmeasurement of brain

correlates of tinnitus in the absence of any external sound

stimulation (Kahlbrock & Weisz, 2008; Osaki et al., 2005;

Sedley, Teki, Kumar, Barnes, et al., 2012). While the utility of

RI in tinnitus is well-established, the same phenomenon has

not been reported in MH. The present study focuses on a

subject, who is at present unique in the literature, whose MH

could be residually inhibited using short periods of music as a

masker stimulus. We used whole-head magnetoencephalog-

raphy (MEG) to contrast oscillatory brain activity during pe-

riods of high and low hallucinations. During periods of higher,

compared to lower hallucination intensity, we found in-

creases in band-limited oscillatory activity in a left-lateralised

network of brain regions.
2. Materials and methods

2.1. Subject

The subject was a 66 year old right handed woman. She was a

Maths teacher and keen amateur musician in that she was an

accomplished keyboard player and had absolute pitch. Her

MH consisted of instrumental (piano) melodies without any
vocals. She demonstrated palinacousis: she often experienced

music that was similar to melodies she had recently heard.

She would hear the hallucinations most of the time but the

content and severity of hallucinations varied from day to day.

Being a musician allowed her to formally document in

musical notation the melodies that she heard. Fig. 1(a) shows

examples of her experiences over part of one day. She had no

verbal hallucinations and no past history of neurological or

psychiatric disorder.

The subject had developed a degree of hearing loss 20 years

before testing. Three years before testing she experienced

sudden acute bilateral hearing loss. She also developed bilat-

eral tinnitus (in the form of hissing and chimes) at this time

and hyperacusis (experiencing sounds comfortable to most

people as intolerably loud). Her perception of music was also

distorted such that she had difficulty recognising pitch, mel-

ody and key. She started using hearing aids at this time, which

were of some benefit. She subsequently, with considerable

time and effort, retrained herself to recognise pitch, key and

melody. Her hearing loss persisted until the time of the study,

at which time hermost recent pure-tone audiogram showed a

relatively flat profile of 50e65 dB HL thresholds in her left ear,

and progressively increasing thresholds in the right ear from

32 dB HL at .5 kHz to 85 dB HL at 8 kHz. During the experiment

she did not wear hearing aids, or experience tinnitus.

Her MH started 15 months after the acute loss of hearing.

She initially thought the music was actually being played

outside but came to realise that there was no external musical

stimulus. Initially themusic consisted of repetition of just two

notes, but grew in length and complexity over time into the

recognisable melodies of several bars in length that she

experienced at the time of the experiment. She regarded the

hallucinations as a nuisance, and was only bothered by them

when her mood was already low for other reasons.

2.2. Stimuli and paradigm

The paradigm used is an adapted RI paradigm as used in

tinnitus (Fig. 1(b)), with an external musical masker stimulus

presented for 30 sec followed by a period of 90 sec silence

duringwhichMEGdatawere collected that formed the basis of

further analysis. The key difference between a classical RI

paradigm for tinnitus and our paradigm was that the former

typically uses noise or a pure-tone as amasker, while we used

short pieces of classical music. We presented excerpts of

music by Bach, as maskers, at a sound level chosen by the

subject to be comfortable and clearly audible in both ears.

These excerpts were selected by the subject as pieces that she

had found to suppress her MH. She reported that not all music

suppressed her hallucinations, and had not experienced a

suppression effect from non-musical sounds. If an RI para-

digm is effective then immediately after the offset of masker,

hallucinations are reduced in loudness, or eliminated, and

subsequently return to normal loudness, typically over tens of

seconds. During the post-masker period, the patient rated the

severity of hallucination every 15 sec on a 7 point scale from

�3 (very low) to 3 (very high) by pressing a key on a keypad.

The rating of 0 at the midpoint of the scale corresponds to the

typical intensity of the hallucinations she had experienced on

that day, prior to testing. To avoid any confounds related to

http://dx.doi.org/10.1016/j.cortex.2013.12.002
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Fig. 1 e Phenomenology of the subject’s musical hallucinations. a: Musical notation, made by the subject, of hallucinations

experienced on a typical day. Sequences of 2e4 bars in length are each repeated for periods of tens of minutes. The subject

identified the second sequence as belonging to Rachmaninov’s Piano Concerto number 2 in C minor. b: Residual inhibition

paradigm used during the experiment, along with subjective ratings of hallucination intensity (grey lines and text). Over the

course of the experiment (horizontal axis), 5 music maskers were played (grey rectangles) for 30 sec, each followed by 6

blocks of 15 sec of silence, before and after each of which the subject made a rating of her current hallucination intensity.

Each block was therefore defined by its preceding and subsequent hallucination ratings, and is represented by a line in the

figure. The 22 blocks whoseMEG data were used for analysis are indicated by green or red lines, indicating their assignment

to the ‘low’ or ‘high’ hallucination condition respectively.
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motor processing, the 15 sec period to be used for subsequent

analysis was measured from the offset of previous rating

period to the onset of next rating (i.e., it did not include any

timewhere shewas preparing or executing amotor response).

The choice of experimental parameters (duration of masker,

silent period and number of ratings during silent period) was

based on a psychophysics session before theMEG session. The

aim of that session was to select the most effective stimuli

that cause RI and to adjust the parameters of these to achieve

maximal variation in the hallucination strength during the

silent periods.

2.3. MEG data collection

MEG data were acquired using a whole-head CTF system with

275 third-order gradiometer channels at a sampling rate of

600 Hz. The data from one channel was discarded due to large
artefacts. The position of the head relative to the sensors was

continuously localized using three coils (nasion, left and right

pre-auricular points), and did not exceed 5 mm during the

experiment. The auditory stimuli were presented diotically

via a pneumatic systemwith etymotic earmolds. A total of five

blocks were recorded, each consisting of 30 sec of stimulus

followed by 90 sec of silence (plus the total time taken to give

the ratings of hallucination intensity). In each block, the

subject rated the severity of the hallucination every 15 sec

following the stimulus offset. Because this 15 sec period was

during the inter-rating period, activity in this period was not

confounded by motor preparation or response. Subjective

ratings of hallucination intensity were made using a three-

button box; a rating of hallucination intensity was displayed

on the screen (defaulting to 0: ‘Normal’), the left button

decreased the rating, the right button increased the rating and

themiddle button confirmed the rating. Thus every ratingwas

http://dx.doi.org/10.1016/j.cortex.2013.12.002
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registered with a single press of the middle button (with the

right middle finger), thereby eliminating differences in motor

activity or planning as a potential confound of MEG results.

2.4. MEG data preprocessing

Data analysis was carried out using SPM8 (www.fil.ion.ucl.ac.

uk/spm/software/spm8). Data recorded continuously after

each of the musical maskers were divided into six 15-sec

epochs. Fig. 1(b) shows that the RI was successful in sup-

pressing the intensity of the hallucination in that the epochs

immediately after each masker increased toward the typical

intensity. Each epoch was defined as a high- or low-intensity

epoch based on the subjects’ ratings of intensity at the

beginning and end of the epoch (with 0 being usual intensity,

negative numbers lower intensity and positive numbers

higher intensity than usual). Epochs in which the rating

remained at or below �2 were defined as ‘low’ intensity and

epochswhere the rating remained at or above�1were defined

as ‘high’ intensity. The data in the epochs did not include time

periods which correspond to the button presses. We used an

equal number of trials per condition to prevent biasing in

favour of one condition or the other in the determination of

threshold based on non-parametric (permutation-based) sta-

tistical analysis. As there were only 11 low epochs but 14 high

epochs, 3 of the epochs were randomly removed from the

‘high’ hallucination condition.

2.5. Beamforming analysis

Beamformers are data-driven spatial filters that project sensor

activity to specified source locations in the brain using a lin-

earlyweighted sumof the sensor signals. Source power from a

given location is reconstructed with unit gain while interfer-

ence from other brain and non-brain sources is maximally

suppressed. We used the linearly constrained minimum

variance (LCMV) beamformer (Van Veen, van Drongelen,

Yuchtman, & Suzuki, 1997) to localize the sources of activity

in different frequency bands.We determined, at each location

of the brain in a 10 mm-spaced 3D grid, oscillatory power in

three frequency bands: 1e4 Hz (delta), 5e14 Hz (theta/alpha),

14e30 Hz (beta), 30e60 Hz (gamma) and 70e140 Hz (high

gamma). For each frequency band, a pseudo-T score was

calculated, representing the power during high hallucinations

versus the power during low hallucinations, at each brain

location. The significance threshold for these scores was

calculated using permutation testing (randomly interchang-

ing conditions 1000 times) to get a null distribution of the t-

statistic. We used this null distribution to set corrected (over

the whole-brain volume) thresholds at p < .05. Clusters of

significant power difference between conditions were dis-

played on a standard T1 weighted template brain MRI.
3. Results

3.1. Behavioural results

The experiment was conducted on a subject with MH in the

context of hearing loss who had typical phenomenology for
this group. She did not experience tinnitus during the exper-

iment. Unusually for this group, this particular subject was

musically sophisticated and able to transcribe her experi-

ences. Fig. 1(a) demonstrates a page of her notebook. During

the experimental session, the subject reported that she

persistently heard MH, in the form of short sequences from

the score of Gilbert and Sullivan’s musical HMS Pinafore.

Whilst the musical maskers (excerpts of music by Bach) were

playing she focussed on these and described no imagery or

recall of the masker at other times. Immediately following the

musical maskers, she returned to experiencing hallucinations

of music from HMS Pinafore. There were no arm or hand

movements except to perform the button presses required by

the experiment. Fig. 1(b) shows the subjective ratings of

hallucination intensity throughout the experiment, which

were lowest immediately after the masking music and grad-

ually increased toward normal prior to the start of the next

masking music. The figure also shows specific blocks of MEG

data that form the basis of further analysis. These results

provide proof of principle for the use of RI to studyMH, though

it is not clear at present the proportion of theMHpopulation in

whom RI can be achieved.
3.2. Sources of oscillatory power change

Four brain regions, all left-lateralised, showed increase in

oscillatory activity during higher hallucination intensity

compared to low hallucination intensity. Significant power

changes, after whole-brain correction, were observed in the

theta/alpha, beta and gamma bands, but not the delta or high

gamma bands. The anatomical areas showing power changes

are discussed below, according to the frequency band of the

power change. No equivalent power changes were noted in

the right hemisphere, even after dramatically relaxing statis-

tical thresholds. Notably, no areas showed significant de-

creases in oscillatory power.
3.3. Gamma oscillations e anterior superior temporal
gyrus

An area of power increase in the gamma band (30e60 Hz) was

found in the left anterior superior temporal gyrus [aSTG; MNI

co-ordinates (�52 �11 �3)]. Fig. 2(a) illustrates this area of

gamma power change while Fig. 2(b) reproduces data from

(Patterson, Uppenkamp, Johnsrude, & Griffiths, 2002) to illus-

trate the position of the area implicated in the perception of

melody in a single typical subject.
3.4. Beta oscillations e motor cortex and posteromedial
cortex

Power increases in the beta band (14e30 Hz) were found in the

left motor cortex [MC; MNI co-ordinates (�30 �41 72)] and the

left posteromedial cortex [PMC; MNI co-ordinates (�9�51 11)],

encompassing parts of the posterior cingulate cortex, pre-

cuneus and retrosplenial cortex. These areas are shown in

Fig. 3.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8
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Fig. 3 e Beta band (14e30 Hz) oscillatory power increases (red areas) associated with increased (high vs low) hallucination

intensity, displayed on saggital (left), axial (middle) and coronal (right) sections of a standard template MRI scan. a: Left

posteromedial cortex, comprising a combination of posterior cingulate cortex, precuneus and retrosplenial cortex. b: Left

primary motor cortex corresponding to the right arm/hand area. Abbreviations: S [ superior, I [ inferior, A [ anterior,

P [ posterior, L [ left, R [ right.

Fig. 2 e Gamma band (30e60 Hz) oscillatory power increases, in a cortical area specialised for processing pitch sequences

(anterior superior temporal gyrus; aSTG), associated with increased (high vs low) hallucination intensity. Heschl’s gyrus,

containing core auditory cortex, runs from posteromedial to anterolateral (ends denoted by yellow arrows), and aSTG is

located anterior to its anterolateral end. a: Areas of significant gamma power increase surviving whole-brain correction (red

areas) displayed on saggital (left) and axial (middle) sections, of a standard template MRI scan, with a 34� tilt applied. b: For
comparison purposes, the results from a single typical subject from (Patterson et al., 2002) are shown (right) in equivalent

tilted saggital and axial sections. The two plots on the left show the positions in the brain of the two enlarged regions on the

right. The area responding selectively to melody is shown in green, falling precisely within aSTG, while blue and red areas

indicate areas responding to noise and to the pitch of single notes respectively related to Heschl’s Gyrus (shown in white).

Abbreviations: S [ superior, I [ inferior, A [ anterior, P [ posterior, Ai [ antero-inferior, Ps [ postero-superior.
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3.5. Theta/alpha oscillations e lateral orbitofrontal
cortex (OFC)

In a combined theta and alpha band (5e14 Hz), power in-

creases were seen in the left lateral OFC (�26 48 �14).

3.6. Power changes in response to musical stimulation

To see how the observed power changes during hallucinated

music compared to those during externally-presented music,

we used equivalent beamforming analysis to contrast brain

activity during the presentation of the musical maskers to

brain activity during baseline states (we used both the pre-

music brain activity and post-music brain activity, corre-

sponding to relatively higher and lower hallucination in-

tensities, as alternative baselines). No significant oscillatory

power changes were seen in the auditory cortex after whole-

brain correction.
4. Discussion

In the current work we describe a unique patient whose MH

could be successfully manipulated using a RI paradigm. This

allowed us to determine, using MEG, changes in the neural

activity as a function of intensity ofMH. Source-space analysis

of the data showed activity in the aSTG (gammaband),MC and

PMC (beta band) and OFC (theta/alpha band).

The part of the auditory cortex (aSTG) that shows higher

activity during MH coincides with an area implicated in the

normal perception of melody (Griffiths, Buchel, Frackowiak, &

Patterson, 1998; Patterson et al., 2002) using fMRI. Unfortu-

nately we were unable to directly compare brain activity cor-

responding to externally-presented and hallucinatedmusic in

this patient, as the former did not produce significant changes

in oscillatory power. Previous intracranial and MEG studies

show that these stimuli should be associated with high-fre-

quency gamma responses (mainly 80 Hz upwards) (Griffiths

et al., 2010; Millman, Prendergast, Hymers, & Green, 2013;

Nourski et al., 2009; Sedley, Teki, Kumar, Overath, et al.,

2012) but the signal-to-noise ratio of these specific gamma

power changes with MEG is extremely low, with successful

detection using MEG requiring very large numbers of stimuli

and group-level analyses (Millman et al., 2013; Sedley, Teki,

Kumar, Overath, et al., 2012). It is not yet understood why

phantom percepts are associated with much stronger gamma

oscillations, as measured with MEG and electroencephalog-

raphy (EEG), than those associated with external sensory

stimulation; for review see (Sedley & Cunningham, 2013).

Themotor systemhas been shown to be active even during

passive listening to music (Chen, Penhune, & Zatorre, 2008)

and during musical imagery in musicians (Haueisen &

Knösche, 2001; Meister et al., 2004). This activity, therefore,

likely reflects involvement of motor areas in musical imagery

processes associated with the generation of hallucinations.

Posteromedial cortex forms part of the default mode

network (Buckner, Andrews-Hanna, & Schacter, 2008; Raichle

et al., 2001) within which the retrosplenial cortex, has been

suggested to have a specific role in the representation of

permanent landmarks (such as objects in a virtual 3D
landscape that are always present in a given location) (Auger,

Mullally, &Maguire, 2012). MH can be considered a permanent

‘landmark’ in the auditory scene once the music has been

present for a certain length of time. Increased activity also

occurs in PMC during retrieval of auditorymemories (Buckner,

Raichle, Miezin, & Petersen, 1996; Huijbers et al., 2012), audi-

tory imagery (Seung-Schick, Uk, & Gil, 2001) and the percep-

tion of unpleasant music (Blood, Zatorre, Bermudez, & Evans,

1999). Taken together, these observations suggest that PMC

has several roles in perception and memory, particularly with

regard to pervasive objects. In MH, these may relate to the

retrieval of musical melody from memory, and generation of

the musical imagery.

We obtained higher activity in the alpha band in the

OFC during periods of MH. The OFC is known to be involved in

the representation and assignment of emotional valence to

stimuli (Rolls, 2007) and is shown to be active in response to

unpleasant music (Blood et al., 1999). It is, therefore, unsur-

prising that its activity was found to correlate with the in-

tensity of hallucinations, which were experienced as

bothersome to a degree by the subject. This is also consistent

with a recent study (Joos, Vanneste, & De Ridder, 2012) which

showed activity in the alpha band in OFC correlated with

distress caused by the phantom percept of tinnitus. We are

not aware of any established or proposed role of this area that

would make it a candidate for actually generating the hallu-

cinatory music. However, the activity of this area could

potentially both modulate and be modulated by the intensity

of hallucinations, serving as a mechanism by which the

attribution of emotional salience to MH could further amplify

the strength of the percept.

It is interesting to compare our results to a recent study

(Vanneste et al., 2013), which used EEG to compare sponta-

neous activity (SA) in a group of subjects with MH to a group

with tinnitus and a group of healthy controls. Although our

study and the previous study used different designs (within-

subjects vs between-subjects, and high/low hallucination

contrast vs SA), there are some interesting points of conver-

gence. By comparing SA associated with MH to SA associated

with the simple phantom percept of tinnitus, Vanneste et al.

(2013) showed increased gamma power in the anterior supe-

rior temporal plane, which is potentially consistent with our

observation of increased gamma power in aSTG (although the

hemisphere involved is different, which may reflect the

musical expertise of our subject, see below). Similarly,

consistent with our study, Vanneste et al. (2013) showed

increased power in alpha and beta bands in ‘higher’ areas,

which is consistent with the hierarchical model of musical

hallucination (see Section 4.3). While the locations of some of

these ‘higher’ areas are different in Vanneste et al. (2013)

(perhaps due to the heterogeneous neuro-anatomical bases

of MH), notably they found strong beta power increases in

PMC associated with both MH and simple phantom percep-

tion. Another finding of Vanneste et al. (2013) is that both

simple and complex phantom auditory percepts were asso-

ciated with increased gamma power in primary auditory

cortex bilaterally. This finding has also been reported in

studies of tinnitus (van der Loo et al., 2009; Sedley, Teki,

Kumar, Barnes, et al., 2012; Weisz, Wienbruch, Dohrmann, &

Elbert, 2005). With these findings in mind, we cannot

http://dx.doi.org/10.1016/j.cortex.2013.12.002
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exclude the possibility our subject had persistently elevated

gamma oscillations in primary auditory cortex, but that these

simply did not change in magnitude between high and low

hallucination states.

Change in power of oscillatory activity in different fre-

quency bands has also been observed in a number of auditory/

visual illusions: increase in both beta and gamma bands

(Vinnik, Itskov, & Balaban, 2012; Wu & Zhang, 2009) and

gamma band alone (Bhattacharya, Shams, & Shimojo, 2002;

Kaiser, Bühler, & Lutzenberger, 2004, 2006; Lange,

Oostenveld, & Fries, 2013). The results of these studies are

consistentwithours in that theypoint to the role of an increase

in beta and gamma oscillations in non-veridical percepts.

4.1. Left lateralisation of neural correlates of MH

The left lateralisation of the activity in the auditory cortex

leads us to speculate whether the musical expertise of the

subject is relevant. Data on left lateralized mechanisms for

auditory analysis by musicians include behavioural (Bever

and Chiarello, 1974; Johnson, 1977), structural (Schlaug,

Jancke, Huang, & Steinmetz, 1995) and functional (Ohnishi

et al., 2001) brain imaging. The asymmetry of hearing loss in

this patient might also be relevant. This subject had greater

low-frequency hearing loss in the left earwhich is in a spectral

region that is important to music and might have led to

asymmetry of musical stimulation in favour of the left

hemisphere and a smaller masking effect in the right

hemisphere.

4.2. Evidence for hierarchical communication

A number of studies have demonstrated schemes in which

gamma activity occurs in hierarchically lower areas and beta

frequency activity in areas that are higher in the cortical hi-

erarchy (Arnal, Wyart, & Giraud, 2011; Bastos et al., 2012;

Wang, 2010). In such schemes, ascending communication

from the lower to the higher areas occurs in the high-

frequency (gamma) signal and descending communication

from the higher to the lower areas in the low-frequency (beta)

signal. Interpreted in the light of such models, our data sug-

gest that MH arise from hierarchical communication between

aSTG (lower in the hierarchy) and both PMC and MC (higher in

the hierarchy). The roles of these cortical areas in normal

musical cognition also suggest hierarchical communication of

this type: a hierarchy based on perceptual activity in lower

areas and activity related to imagery and memory in higher

areas.

4.3. A canonical model of MH

Here we present a newmodel to explain the development and

maintenance of MH. This is based entirely on known neural

processes, and requires no pathology other than hearing loss

in order for MH to develop. Our present MEG findings are in

keeping with this model.

4.3.1. Predisposing factors for developing MH
MH is a rare phenomenon: although estimates vary across

studies, less than one percent of population who have
acquired hearing loss develop MH (Cope & Baguley, 2009). We

first consider why some people but not others with acquired

hearing loss develop complex hallucinations of music and

why complex auditory hallucinations in acquired hearing loss

preferentially take the form of music rather than other per-

cepts such as speech or environmental sounds.

4.3.1.1. CHARACTERISTICS OF THE INDIVIDUAL. In our model, top-

down predictions (or ‘priors’) in the auditory system are

crucial in the development of MH. These are influenced by

previous experience, beliefs and expectations. Musical expo-

sure and the importance attached to music by the individual

might therefore be relevant. This is relevant to the subject of

the current study who is a keen and accomplished amateur

musician. But MH can also develop in the absence of any

musical training. Studies of the factors that influence sponta-

neousmusic imagery (a ‘tune stuck in the head’ or ‘ear worm’)

may be informative here, as the normal substrates formusical

perception and spontaneous music imagery show consider-

able overlap (Kraemer, Macrae, Green, & Kelley, 2005) and a

mechanism for ear worms might be based on similar neural

architecture and physiology to the one we are proposing for

MH.Apositive correlationbetween the frequencyandduration

of ear worms and musical skill (Bailes, 2007; Liikkanen, 2008,

2011) has been demonstrated. Beaman and Williams (2010)

further showed that it is not the musical skills per se but the

‘subjective importance’ attached to music that predicted the

frequency of ear worms. This might explain why people with

no musical skills but who nevertheless regard music as an

important part of their life (e.g., listening to music for enter-

tainment) can also get MH. The possible relevance of abnor-

malities of attention (Collerton, Perry, & McKeith, 2005) as a

predisposing factor also merits further investigation.

4.3.1.2. CHARACTERISTICS OF MUSIC. While complex hallucina-

tions following acquired hearing loss in the form of music are

well-described (see references in the Introduction), reports of

other types of complex auditory hallucination (such as voices)

that are uniquely associated with hearing loss, in the absence

of other factors, are rare. Sommer et al. (2010) describe verbal

hallucination in some normal individuals, but the hallucina-

tions were associated with factors that are not uniquely

attributable to the hearing loss. We have encountered a very

small number of patients with MHwho also experience verbal

hallucinations without evidence of psychotic illness (personal

observation TD Griffiths: two patients in a series of fifty). This

suggests that such patients do exist, butwith a lowprevalence.

We propose that patients with hearing loss experience

musical rather thanother types of hallucination becauseof the

statistical properties of music. Music, compared to speech and

language, is more predictable (Fitch, 2006) and repetitive (see

Introduction chapter in Ockelford, 2005 and references

therein). Predictable means that hearing the present note, or

fewnotes, is sufficient to predict the upcomingnotes, either by

itsmathematical rules (Voss&Claske, 1975; Levitin, Chordia,&

Menon, 2012) or by retrieval from memory (Schellenberg,

Iverson, & McKinnon, 1999). The predictability of music may

be due to discretization of both pitch (scale) and temporal

(beat) dimensions in music, in contrast to speech where both

dimensionsare continuous (Fitch, 2006). Repetitivemeans that

http://dx.doi.org/10.1016/j.cortex.2013.12.002
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a given segment ofmusic (a bar or amelody) is repeated over a

course of time. Repetition in music is shown to be important

for its emotional and aesthetic value (Garcia, 2005; Pereira

et al., 2011) and is such a critical aspect for distinguishing it

fromspeech that if a spokensentence is repeated several times

over, it starts sounding like music (Deutsch, Henthorn, &

Lapidis, 2011). Because of these properties of music, the

percept of music once initiated is selectively reinforced to

persist because of the repetitiveness and predictability of

music. Moreover, since violations of predictions/expectations

of music percept evoke negative emotions (Steinbeis, Koelsch,

& Sloboda, 2006), the percept is continued as per expectations.

We argue that it is this recursive cycle that is uniquely appli-

cable to music which may explain why the content of hallu-

cinations following hearing loss is predominantly music.

However we do not argue that non-musical complex percepts

(such as speech) cannot occur in acquired hearing loss, but

rather that the properties of music mentioned above make it

muchmore likely to be the subject of hallucinations following

hearing loss.

4.3.2. Neuronal model of MH
Our model of MH is based on the ‘predictive coding’ theory of

brain function (Bastos et al., 2012; Kumar et al., 2011; Rao &

Ballard, 1999). In this framework, each level of the cortical

hierarchy tries to predict the representation of sensory objects

in the level below by sending top-downpredictions. Aspects of

the representation that are inconsistent with the prediction

(the prediction error) are then passed back to the higher level.

Prediction errors are then used to update the representations

at the higher level. In this framework, all bottom-up

(ascending) connections communicate prediction error, and

top-down (descending) connections convey predictions. This

message passing changes hierarchical representations such

that prediction error is minimized at all levels. In this regard,

the predictive coding framework is Bayes-optimal from the

perceptual inference perspective (Friston, 2010).

A schematic representation of the predictive coding e

using three levels of a hierarchy e is shown in Fig. 4(a). Each

level comprises two neuronal populations marked ‘P’ (pre-

diction) and ‘E’ (error). Prediction populations are located in

deep cortical layers, while error populations are located su-

perficially. These populations are reciprocally connected

within their levels and with the next hierarchical level, such

that each prediction population updates its prediction based

on prediction error from its own level and the level below.

Conversely, each error population encodes its prediction error

based on predictions from its own level and the level above.

Evidence from electromagnetic recordings in humans (Arnal

et al., 2011; Iversen, Repp, & Patel, 2009) suggest that top-

down prediction and bottom-up prediction error may use

different frequency bands; where descending predictions are

transmitted in the beta range (blue arrows in the figure) and

ascending prediction errors are conveyed predominantly in

the gamma band (red arrows in the figure). See (Bastos et al.,

2012) for a fuller discussion.

A crucial aspect of this model is the relative contribution of

bottom-up (prediction error) and top-down (prediction) in-

fluences on representational updates. Perceptual inference e

at a given level of the hierarchy e rests on the influence of
prediction errors from lower levels, relative to the prediction

error at the level in question. In predictive coding, these in-

fluences are proportional to ‘precision’, which is an estimate

of the signal-to-noise ratio or reliability of the prediction error

(Feldman& Friston, 2010). Physiologically, precision is thought

to be encoded by the post-synaptic gain of the neurons that

encode prediction error; namely, superficial pyramidal cells

(Bastos et al., 2012; Mumford, 1992). If the gain of superficial

pyramidal cells is relatively high in sensory areas, the propa-

gation of sensory input (sensory prediction error) up the hi-

erarchy is facilitated and top-down predictions are changed to

match sensory input. In this context, the percept is dominated

by sensory input. On the other hand, if post-synaptic gain is

relatively higher in upper levels, then top-down predictions

are more precise and will dominate perceptual inference e

being relatively impervious to imprecise bottom-up

influences.

Generalised models of predictive coding (Feldman &

Friston, 2010) suggest that the precisions at different hierar-

chical levels depend on the context (e.g., paying attention to a

particular feature of the sensory stimulus will increase the

precision of pathways reporting that feature). In thesemodels,

precisions are estimated in much the same way the causes of

sensory input. Specifically, the top-down input not only pre-

dicts the input at the lower level (content) but also predicts the

precision (context) at that level. The important point here is

that the precision or post-synaptic gain, at a given level, can be

adjusted by a top-down input. Mechanistically, post-synaptic

gain can be changed by several factors that include fast

oscillatory activity (Fries, Womelsdorf, Oostenveld, &

Desimone, 2008) and the activity of neuromodulators such

as acetylcholine (Yu & Dayan, 2005).

In the current context, we can consider three levels of the

cortical hierarchy that comprise primary auditory cortex (A1)

at the lowest, aSTG at themiddle and PMC/MC at highest level.

Primary auditory cortex is the gateway to auditory cortex for

all acoustic stimuli and is therefore lowest in the hierarchy.

The aSTG is hierarchically below the PMC/MC because, while

aSTG has been shown to be involved in sensory perception of

music (Patterson et al., 2002), PMC/MC are involved in high

level cognitive tasks related to music. For example, PMC is

involved in imagery and retrieval of episodic memories for

music (Halpern & Zatorre, 1999; Janata, 2009) and is thought to

be involved in storage of amodal conceptual knowledge

(Fairhall & Caramazza, 2013). Similarly, MC is involved in

musical imagery, especially in musicians (Haueisen &

Knösche, 2001; Meister et al., 2004) and is known to modu-

late e in a top-down fashion e auditory cortex (Iversen et al.,

2009). The observed frequency bands of power change in our

data (gamma in aSTG and beta in PMC/MC) further support

this hierarchical interpretation.

Crucially, we consider MH to be the result of aberrant hi-

erarchical precision or gain control that results from hearing

loss. In animal models of hearing loss, recordings from ani-

mals show SA in almost all centres of the auditory hierarchy

(including the dorsal cochlear nucleus, inferior colliculus and

primary and secondary auditory cortex (see Kaltenbach, 2011

for review). Studies investigating evolution of the time course

of SA show that elevated SA in the central auditory system is a

consequence of passive relay of activity from the lower

http://dx.doi.org/10.1016/j.cortex.2013.12.002
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Fig. 4 e Predictive coding model of musical hallucinations. (a) Neural architecture of proposed model. Three levels of a

cortical hierarchy for music processing are depicted (primary auditory cortex, aSTG and PMC/MC in order of lower to higher).

Each cortical area comprises prediction error (E) populations in the superficial layers which oscillate at gamma frequencies,

and prediction (P) populations in the deep cortical layers which oscillate at beta frequencies. Bi-directional communication

occurs between P and E populations within each level and between each pair of adjacent levels. Thicker lines represent

more precise predictions and predictions errors, which constitute the fundamental hallucinatory circuit, while dashed lines

represent imprecise activity driven by spontaneous noise-like input from sub-cortical pathways. aSTG [ anterior superior

temporal gyrus. PMC[ posteromedial cortex. MC[motor cortex. (b) Schematic of Bayesian inference (i) normal perception.

The left panel illustrates the state of the system at stimulus onset, with a relatively precise sensory signal, a less precise

prediction and a prediction error due to incongruence between these. The right panel illustrates the system after a short

interval (w100 msec), during which the higher prediction has been modified to become congruent with the sensory signal

and more precise. The perceptual inference is therefore veridical (ii) Bayesian inference in musical hallucinations. The left

panel shows the state of the system when hallucinations are low in intensity. Imprecise SA with relatively high precision

top-down prediction is combined to infer a weak musical percept. After reinforcement, the top-down prediction becomes

more precise (right panel) and therefore a strong percept of music (hallucinations) is inferred.
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auditory centres (Manzoor, Gao, Licari, & Kaltenbach, 2013;

Mulders & Robertson, 2009, 2011). The increased SA in lower

auditory centres could be because of local homeostatic

mechanisms (Turrigiano, 2008; for review see Noreña, 2011) to

restore the baseline activity following hearing loss.

Our hypothesis is that peripheral hearing loss reduces the

signal-to-noise ratio of incoming auditory stimuli and the

brain responds by decreasing sensory precision or post-syn-

aptic gain. In our model, this happens at or below the level of

primary auditory cortex. Because of relatively higher

(compared to A1) precision, aSTG conveys relatively precise

prediction error to PMC/MC (in the gamma band) and PMC/MC

reciprocates predictions to aSTG (in the beta band). A recur-

rent loop of communication is thus established between aSTG

and PMC/MC which is no longer informed, or entrained, by

precise bottom-up sensory prediction errors. Spontaneous

activities in these areas, therefore, correspond to autonomous

perceptual predictions. Since the precision of ascending sen-

sory information is low, top-down predictions in this recur-

rent loop are only constrained by a need to preserve the

internal consistency between hierarchial representations of

music in aSTG and PMC/MC. This reciprocal communication

between an area in music perception (aSTG) and area/s

involved in higher music cognition (PMC/MC) with no

constraint from the sensory input gives rise to MH. In sum-

mary, it is the adaptive reduction of sensory precision (esti-

mated signal-to-noise ratio) that permits the emergence of

hallucinatory predictions or percepts that are inferred with a

relatively high degree of precision or confidence. A heuristic

illustration of this perceptual inference during normal

perception and during MH is shown in Fig. 4(b).

The auditory systems of all people with a sufficient degree

of acquired hearing loss presumably undergo these adaptive

changes in relative precision, yet only a small minority of

these individuals develop MH. We propose that the critical

step in developing MH, in the context of reduced sensory

precision, is the establishment of predictions and prediction

errors, consistent withmusic, that are strong enough to result

in the recursive cycle of self-reinforcement described above.

Reaching this state is most likely the combination of charac-

teristics of the individual, as described above and chance

combinations of internal and external circumstances.

It should be noted that our model is not tied to specific

anatomical locations but argues for a specific and aberrant

pattern of communication between ‘higher’ and sensory

levels within the hierarchical framework of predictive coding.

Given the empirical and theoretical evidence that ascending

prediction errors and descending predictions are conveyed in

distinct frequency bands, the pattern of changes in reciprocal

message passing could be tested empirically using inter-

frequency causal interactions (Chen, Kiebel, et al., 2008;

Moran et al., 2009) or the direct estimation of post-synaptic

gain, using dynamic causal modelling (Moran et al., 2013).

4.3.3. Explaining RI in terms of predictive coding
As observed in the current study, external music reduced the

intensity of hallucinations. Furthermore, hallucinations

remained low in intensity for almost a minute or so after the

offset of music (residual suppression). We now explain this

effect using our model.
Under the predictive coding model, hallucinations arise

from recurrent interactions between PMC/MC and aSTG that

are not constrained by the sensorium because of the attenu-

ation of sensory precision. If a precise sensory input is avail-

able, as when listening to music in a high signal-to-noise

context, hierarchical perception will be entrained to predict

precise sensory input. The spontaneous autonomous dy-

namics is suppressed, thereby stopping or reducing the in-

tensity of hallucinatory percept. Furthermore, one might

anticipate that there would be a transient increase in sensory

precision (post-synaptic gain) that reflects the increase in

auditory signal-to-noise. If this transient increase persisted

for a fewminutes (through enduring changes in post-synaptic

sensitivity), the emergence of spontaneous autonomous

perceptual dynamics would be suppressed temporarily. This

suggests that RI of musical hallucinosis should be accompa-

nied by a transient increase in the gain of the sensory areas e

a prediction that, in principle, could be tested empirically.

As the current study is the first to report RI in MH, effec-

tiveness of RI in a larger population of subjects needs to be

empirically tested in future studies.
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