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ABSTRACT 

Natural auditory scenes consist of a rich variety of temporally 

overlapping sounds that originate from multiple sources and locations and 

are characterized by distinct acoustic features. It is an important biological 

task to analyze such complex scenes and extract sounds of interest. The 

thesis addresses this question, also known as the “cocktail party problem” 

by developing an approach based on analysis of a novel stochastic signal 

contrary to deterministic narrowband signals used in previous work. This 

low-level signal, known as the Stochastic Figure-Ground (SFG) stimulus 

captures the spectrotemporal complexity of natural sound scenes and 

enables parametric control of stimulus features. In a series of experiments 

based on this stimulus, I have investigated specific behavioural and neural 

correlates of human auditory figure-ground segregation. 

This thesis is presented in seven sections. Chapter 1 reviews key 

aspects of auditory processing and existing models of auditory segregation. 

Chapter 2 presents the principles of the techniques used including 

psychophysics, modeling, functional Magnetic Resonance Imaging (fMRI) 

and Magnetoencephalography (MEG). Experimental work is presented in 

the following chapters and covers figure-ground segregation behaviour 

(Chapter 3), modeling of the SFG stimulus based on a temporal coherence 

model of auditory perceptual organization (Chapter 4), analysis of brain 

activity related to detection of salient targets in the SFG stimulus using 

fMRI (Chapter 5), and MEG respectively (Chapter 6). Finally, Chapter 7 
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concludes with a general discussion of the results and future directions for 

research. 

Overall, this body of work emphasizes the use of stochastic signals 

for auditory scene analysis and demonstrates an automatic, highly robust 

segregation mechanism in the auditory system that is sensitive to temporal 

correlations across frequency channels. 
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Chapter 1. GENERAL INTRODUCTION 

1.1 Sensory Coding in the Natural Environment 

To obtain a coherent understanding of sensory coding and perception, 

it is vital to understand the structure of natural signals and how biological 

(neural) systems encode and process these complex stimuli. However, 

traditionally, neuroscientists and psychologists have used relatively simple, 

"controlled" stimuli in laboratory setups - sine-wave gratings, pure tones, 

spots, clicks, taps or periodic skin vibrations to probe the response 

properties of sensory neurons and characterize perceptual abilities. Although 

this approach represents a very successful method of understanding 

information processing at the early stages of sensory processing, it only 

offers a simplistic view of the complex sensory analysis that the brain 

performs in the real world. Furthermore, in the cerebral cortex, where 

information processing is highly nonlinear and under the influence of 

recurrent computation in the form of feedback signals from other cortical 

neurons, this approach offers limited utility. Cortical neurons encode 

specific spectrotemporal patterns from the input (auditory) stream, but it is 

challenging to discover these by simply probing one element at a time in a 

reduced stimulus space in the absence of appropriate context and 

behavioural relevance.  

The auditory domain presents a rich mixture of signals that span a 

large bandwidth and are characterized by different spectrotemporal 

properties that vary significantly from one moment to another. Imagine a 

simple scenario of walking from home to office – we are immersed in an 
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environment buzzing with sounds of bird calls and rustling of leaves on 

trees (hopefully), the unavoidable din due to traffic and other people 

(unfortunately). We are frequently faced with such busy auditory 

environments and have to perform the complex task of making sense of it in 

real-time.  

Considering the complexity of the rich (auditory) stimulus space, it is 

reasonable, therefore, to develop and use the sort of inputs that the sensory 

system is designed to process. This approach is applicable not only in the 

auditory domain but all aspects of sensory processing in general and has 

been adopted successfully by various interdisciplinary laboratories 

exploring related questions of sensory processing:  

- What is the structure of natural signals in the environment and how can 

these be characterized using statistical principles?  

- How are natural stimuli encoded by neurons? 

- How are the different features combined to represent an object? 

- How is sensory processing influenced by the interaction of the organism 

with the environment and behavioural goals? 

- How robust is sensory encoding to noise and challenging environments? 

- How can these principles be used to design synthetic stimuli, and build 

artificial devices to restore impaired sensory perception? 

- How can research inform treatment and cure for clinical disorders of 

abnormal perception? 

These questions lie at the heart of research in sensory systems 

neuroscience and the solutions require a multidisciplinary approach drawing 
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upon theory and methods from neurophysiology, psychophysics, 

neuroimaging, computational modeling, signal processing and complex data 

analysis.  

This thesis addresses a fundamental question of information 

processing and perceptual organization in the auditory domain – what are 

the neural bases and mechanisms underlying our ability to group together 

elementary (spectrotemporal) features into discrete (auditory) objects and to 

segregate these objects from each other and from the background? 

1.2 Natural scene analysis  

The living world is a dynamic exhibition of several objects and stimuli 

and in order to survive, any organism must be able to perceive these signals 

accurately, make appropriate responses, assess the outcomes of the response 

and learn to make better and more flexible responses in the future. 

Embedded in an environment teeming with all kinds of sensory stimulation, 

an organism must have sophisticated sensory systems in place to make sense 

of the world. Al Bregman, a pioneer in the field of auditory perception, 

summarized the role of perception as below: 

“The job of perception is to take the sensory input and to derive a 

useful representation of reality from it.”  

(Bregman, 1990) 
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1.2.1 Auditory scene analysis 

The term, ‘auditory scene analysis’, owes its origin to Al Bregman 

who characterized auditory perceptual behaviour and examined our ability 

to separate objects and selectively attend to them in a stream of stimuli 

using a variety of perceptual paradigms (Bregman, 1990). Auditory scene 

analysis refers to the problem of separating the incoming mixture of sounds 

that reaches our ear and into individual perceptual objects.  
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Figure 1.1: A typical cocktail party.  

The listener must follow the speech of one person in the presence of several other 

sounds. (Image from Breakfast at Tiffany’s: Paramount Pictures). 
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Consider a typical listening environment that suitably describes the 

“cocktail party effect” (Cherry, 1953) as shown in figure 1.1. Audrey 

Hepburn is faced with the challenging task of listening to the person 

wearing the eye patch in the presence of several people who act as sources 

of background noise. In order to make sense of his speech, Audrey’s brain 

has to decompose the mixture into discrete signals of interest and noise; 

maintain a stable representation of his voice and selectively attend to it over 

time.  

Thus, there are two aspects to the cocktail party problem – firstly, a 

problem of sound segregation, and secondly, a problem of directing 

attention to the (segregated) sound of interest (McDermott, 2009). These 

two problems can be assumed to operate at two distinct levels of processing 

that may interact with each other – a bottom-up (primitive) low-level 

sensory process that is concerned with efficient coding of the stimulus 

features and deriving the properties of individual sounds; and a top-down 

(schema-based) cognitive process that operates at a higher level, presumably 

directly at the level of the grouped patterns of sounds and is concerned with 

allocation of attention to the target sound, switching attention between 

targets and maintaining a stable perceptual representation over time 

(Bregman, 1990, 2008). Bregman defined schemas as a set of brain 

processes for dealing with acoustic patterns. These schemas could be innate 

or could also be developed through learning and interaction with the 

environment. Schemas are essentially mechanisms that help in sound 
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recognition and categorization and thus assist in segregating these patterns 

from the background.  

 This problem is not unique to humans and is of importance to several 

species that must identify their mates, offspring, prey or predators in 

crowded environments. This suggests that over the course of evolution, the 

brain may have developed specialized mechanisms to perform auditory 

scene analysis that are robust in the presence of background noise. 

1.2.1.1 What is an auditory object? 

How do our senses treat environmental stimuli and form ‘object-

like’ representations that are different for different objects yet remain stable 

for the same objects in time and space? Objects in general, can be 

considered as perceptual entities that are represented in the brain based on 

generic mechanisms that analyze and represent sensory information. The 

concept of such a perceptual object makes intuitive sense in vision but is a 

difficult notion in audition, touch and other senses.  

Auditory objects can be defined as complex two-dimensional 

patterns in frequency-time space that are governed by grouping mechanisms 

in the frequency and time domains (Griffiths and Warren, 2004; Griffiths et 

al., 2012; Bizley and Cohen, 2013). Unlike visual objects, there are no clear 

edges or perceptual boundaries that distinguish one auditory object from 

another and the separation of information related to the object and to the rest 

of the background becomes a challenging task. Objects also need to satisfy 

properties of invariance or constancy in any one sensory domain – for 
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instance, a face is recognized as the same object when viewed from different 

angles or a voice is recognized as belonging to the same speaker even when 

it varies in loudness or pitch.  

Generic principles of object analysis have been proposed for 

auditory objects (Griffiths and Warren, 2004; Bizley and Cohen, 2013) that 

are based on analysis of auditory patterns in frequency-time space. Auditory 

patterns can be grouped on the basis of several grouping principles that aid 

perceptual classification and are discussed in the following section. 

1.2.1.2 Auditory grouping cues 

Although it may appear that there is no structure in the signals in the 

world around us, they are often characterized by statistical regularities 

which the human brain may have learned over the course of evolution. For 

instance, most natural signals are characterized by a 1/f power spectrum and 

are represented by sparse perceptual codes in the primary visual (Olshausen 

and Field, 1996) and auditory cortices (Hromadka et al., 2008). A sparse 

code is a neural code in which each object is encoded by the strong 

activation of a relatively small population of neurons (Barlow, 1972). The 

ability to resolve complex acoustic mixtures is a challenging problem that 

may be rendered easier by the use of certain grouping principles or 

heuristics that exploit statistical regularities in the world (Bregman, 1990).  

Auditory grouping can be considered to have two aspects – 

simultaneous grouping and sequential grouping. Simultaneous grouping 

refers to the task of determining which parts of the complex acoustic input 
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presented at the same time belong to which particular source. Natural 

sounds overlap in time and disentangling this mixture into separate sources 

presents a challenge to the sensory systems. Sequential grouping, on the 

other hand, is required for relating spectral components to their respective 

sources over time. Although there is an interaction between the two types of 

grouping processes, these are often investigated separately.  

The Gestalt principles of grouping were postulated by a group of 

German psychologists in the early twentieth century to explain how units of 

visual experience are connected to one another (Koffka, 1935; Köhler, 

1947). Gestalt refers to a ‘pattern’ and the psychologists developed an 

influential theory of how the brain generates mental patterns by forming 

connections between elements of sensory input based on the principles of 

similarity, continuity, proximity, and common motion. Visual objects can be 

grouped together on the basis of similarity and proximity which also apply 

for grouping of sounds based on similar features such as pitch and grouping 

on the basis of the location of sources. Sounds can also be classified as 

belonging to the same source based on principles of common onset and 

offset, harmonicity, and localization (Bregman, 1990; Darwin and Carlyon, 

1995). A difference in these features between sounds can be used as a cue to 

distinguish between them. 
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Figure 1.2: Grouping cues in audition.  

The spectrogram of a speech sample is used to illustrate cues for grouping sounds 

together such as common onset, common offset and harmonic structure. Figure 

reproduced from McDermott, 2009. 
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In the case of complex tones (as opposed to pure tones), segregation 

can be achieved based on differences in a number of features including 

fundamental frequency, spectral shape or envelope (that determines timbre), 

spatial location, intensity, and amplitude envelope (Bregman, 2008).  

1.2.2 Visual scene analysis 

The problem of object separation, binding and perceptual 

representation is not unique to the auditory domain. The segmentation of 

visual scenes is a fundamental process of early vision and has received 

much more attention, especially by the Gestalt psychologists. Several 

principles of auditory grouping are indeed inspired by research into visual 

segmentation and principles of visual information processing (e.g. Julesz, 

1962; Sporns et al., 1991), and continue to inspire models of auditory 

processing (King and Nelken, 2009).  

The coherent dot motion paradigm has inspired several models of 

perceptual grouping in vision (Shadlen and Newsome, 1996). It consists of a 

number of dots whose direction of motion is parametrically controlled as 

shown in figure 1.3. The percentage of dots moving in a certain direction 

defines the coherence of those particular set of dots that comprise a “figure” 

which moves in a different direction from the remaining dots that move in 

random directions and comprise the “ground”. Such stimuli have been 

instrumental in understanding the properties of direction- and orientation-

selective cells in the primary visual cortex and inspired analogous versions 

of synthetic stimuli for examining auditory object formation (e.g. Overath et 

al., 2010). 
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Figure 1.3: Visual coherent dot motion paradigm.  

The paradigm involves manipulation of the number of dots moving in a certain 

direction whilst the remaining dots move in random directions. The three examples 

here indicate three different levels of coherence: 0%, 30%, and 100%. 
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Although visual scenes also contain multiple objects at different 

locations, the problem of segmentation is more pronounced for auditory 

signals. A prominent difference arises at the earliest level of processing – 

visual objects tend to occupy local regions on the retina whilst sounds are 

spread across the frequency map of the cochlea. Thus, there is considerable 

overlap in the representation of auditory objects at the initial stage of 

processing. Secondly, sound sources combine linearly to form a single input 

waveform at the ears, whilst visual objects occlude each other. Thirdly, the 

visual world is relatively static compared to the much more dynamic 

acoustic scenes. Another source of difference occurs at a higher level – 

auditory segregation is much more difficult to perform compared to visual 

segmentation and requires a significant “cognitive effort”, that becomes 

worse with aging and hearing loss. These differences highlight the 

challenging aspect of auditory scene analysis and point towards different 

mechanistic bases of segregation in audition compared to vision.  

The following section considers the anatomical and functional 

properties of the auditory system and how the underlying organizational 

principles of information processing in the auditory system inform our 

understanding of the mechanisms involved in auditory scene analysis. 

1.3 The auditory system 

The range of frequencies to which the auditory system best responds 

to varies from one species to another. In rats, it ranges from 0.25 – 70 kHz, 

from 0.125 – 60 kHz in cats, and from 0.02 – 20 kHz in humans. The 

processing of frequency can be considered to be the primary function of the 
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auditory system and serves as a major organizing principle. This operation is 

achieved by coordinated activity from the cochlea in the periphery to 

higher-order areas in the association auditory cortex. The next section 

briefly describes the anatomical pathways and flow of information between 

the various auditory processing stations. 

1.3.1 Information flow from the cochlea to the cortex 

The acoustic input that reaches our ears is processed by a network of 

structures that comprise the primary (lemniscal) ascending auditory 

pathway. At the level of the periphery, sound waves are mechanically 

transmitted through the outer and middle ear to the hair cells of the organ of 

Corti that is part of the cochlea of the inner ear. Hair cells span the entire 

length of the basilar membrane whose mechanical properties gradually vary 

along its length. This results in differential tuning of the hair cells such that 

they are tuned to progressively lower frequencies from the base to the apex 

of the cochlea. The cochlea thus acts as a frequency analyser (von Békésy, 

1970) and this information is transmitted to the brainstem by auditory nerve 

fibres that synapse on the inner hair cells. In the cochlear nucleus complex, 

the input from the auditory nerve is shunted into a number of parallel 

ascending pathways that are characterized with separate trajectories and 

destinations (Fuchs, 2010). These tracts converge on the auditory midbrain, 

i.e. the inferior colliculus (IC) that serves as an obligatory relay station en 

route to the auditory cortex. The IC is organized into different nuclei that 

include the central (ICc), dorsal cortex (ICDC) and lateral (ICL) nuclei. The 

central IC nucleus is tonotopically organized and forms part of the “core 
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projection” whilst the other divisions of the IC constitute the non-tonotopic 

or diffuse ascending pathway, that comprise the “belt projection”. The ICc 

projects to the ventral division of the auditory thalamus, the medial 

geniculate body (MGB) that mainly targets the tonotopically organized core 

areas of the auditory cortex. The dorsal divisions of the MGB receive 

afferents from the ICDC and ICL nuclei of the IC while a third magnocellular 

division of the MGB receives input from all three nuclei of the IC. The 

dorsal divisions of the MGB target the non-tonotopic belt areas that 

surround the core auditory cortex. Apart from the MGB, the auditory cortex 

also receives input from adjoining nuclei in the posterior thalamus that have 

auditory and multisensory properties (Hackett, 2011).  

 Thus, each cortical field receives inputs from the individual thalamic 

nuclei that have specific neurochemical properties. Each thalamic station 

thus sends distinct information to its cortical targets and can be assumed to 

form parallel information streams (Rodrigues-Dagaeff et al., 1989; Rouiller 

et al., 1989; Jones, 2003; Lee and Winer, 2008a). 

1.3.2 Structural organization of the auditory cortex 

In this section, the organizational structure of the auditory cortex is 

described with a specific focus on the anatomy of the human auditory 

cortex. Although with the advent of high-resolution functional and structural 

MR imaging, parcellation of human auditory cortical fields can be 

investigated in better detail, the core knowledge of the organizational 

principles of human auditory cortex is derived from cytoarchitectonic as 

well as physiological studies in animal models, especially the primates. 
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However, in spite of decades of research on this topic, the accurate 

definition of primary and secondary human auditory cortex still eludes us. 

There is considerable debate about the nomenclature used to describe human 

cortical fields and there is no established homology between core, belt and 

parabelt regions in the macaque auditory cortex and primary, secondary and 

association cortex in humans although a correspondence between these 

areas is assumed in the literature (see Baumann et al., 2013).  

Early architectonic studies identified core auditory cortex in the 

temporal plane on the basis of a well-developed granular layer 4 

(koniocortex), dense myelination, and thalamic connectivity (Fleschig, 

1876, 1908; Campbell, 1905; Brodmann, 1909; von Economo and Koskinas, 

1925; von Economo and Horn, 1930). Recent definitions of auditory cortex 

suggest that it comprises those areas of the cerebral cortex that receive 

significant thalamic input from one or more divisions of the MGB (Hackett, 

2011). This definition constrains the auditory cortex to a group of adjoining 

regions in the superior temporal plane. In humans and higher primates, a 

significant portion of the auditory cortex is hidden beneath the Sylvian 

fissure (or lateral sulcus, as commonly denoted in other higher primates), 

separating the parietal and temporal lobes.  

In all mammals that have been studied, the auditory cortex 

comprises more than one area as shown in figure 1.4. In cats and primates, 

more than ten areas have been identified which are classified into a central 

“core” region, whilst the secondary areas are grouped as “belt” and 

“parabelt” regions surrounding the core (Hackett, 2011). The core area 
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consists of a primary area (A1), and more anterior rostral (R) and 

rostrotemporal (RT) areas whilst the belt and parabelt subfields are named 

according to their respective anatomical locations (e.g. anterolateral, AL, 

caudomedial, CM; rostromedial, RM, and so on; see Figure 1.4).  
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Figure 1.4: Organization of the auditory cortex in selected mammals.   

Primary (core) areas are shaded while belt and parabelt areas are unshaded. 

Tonotopic gradients are depicted by H (high) and L (low) frequency. Figure 

reproduced from Hackett, 2011. 

Abbreviations: AAF, anterior auditory field; A1, auditory area 1; AL, anterolateral 

area; CPB, LS, lateral sulcus; ML, middle lateral area; MM, middle medial area; 

PAF, posterior auditory field; R, rostral area; Ri, retroinsular area; RM, rostromedial 

area; RPB, rostral parabelt area; RT, rostrotemporal area; RTL, rostrotemporal 

lateral area; RTM, rostrotemporal medial area; STG, supeior temporal gyrus V, 

ventral division (medial geniculate); VAF, ventral posterior auditory field. 
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In humans, the homologous core, belt, and parabelt regions comprise 

some 30 functionally distinct subfields (Hackett, 2011; Clarke and Morosan, 

2012). The human auditory cortex is considered to include the posterior 

portion of the superior temporal cortex, including the Heschl’s gyrus (HG), 

the planum temporale (PT), and some areas in the posterior superior 

temporal gyrus (STG). These areas correspond to Brodmann areas (BA) 41, 

42, 52, and 22 (Brodmann, 1909). Areas in the superior temporal sulcus 

(STS) and, more rostrally towards the planum polare (PP), at the temporal 

pole, are considered auditory-related areas (Hackett, 2011). In humans, the 

homologue of the core in non-human primates can also be classified into 

three distinct areas: a primary area in central HG, and two secondary areas 

in medial and anterolateral HG (Morosan et al., 2001; Rademacher et al., 

2001); these are also referred to as areas Te1.0, Te1.1, and Te1.2, 

respectively (Morosan et al., 2001, 2005). Although there is consensus on 

the location of the centre of the human primary auditory cortex in the medial 

two-thirds of HG, its exact areal borders and number of subdivisions are still 

debatable (Clarke and Moroson, 2012; Baumann et al., 2013). This is partly 

complicated by the high inter-subject and inter-hemispheric variability with 

features such as forked or duplicated HG (estimated occurrence 41%, 

Rademacher et al., 1993). In the case of a duplicate HG, the primary 

auditory cortex usually covers parts of both gyri and the intermediate 

transverse sulcus.   

The problem of the exact location of the human primary auditory 

cortex is also aggravated due to the lack of techniques to delineate PAC in 

vivo. Anatomical labels derived from post-mortem cytoarchitectonic maps 
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may be inaccurate in relation to different samples of in-vivo brains 

(Morosan et al., 2001). A recent approach to this problem involves the use 

of high resolution structural magnetic resonance imaging and analysis of the 

MR-tissue characteristics to precisely define the location of PAC in vivo. 

These techniques include high-resolution (800 µm) quantitative T1-mapping 

(Dick et al., 2012), mapping of longitudinal relaxation rate (R1; Sigalovsky 

et al., 2006; Lutti et al., 2013), as well as the complementary use of a 

combination of MR contrasts (T1 and T2) at high-resolution (700 µm; 

Wasserthal et al., 2013). Quantitative T1 and R1 mapping provide estimates 

of myelination and it has been shown that areas of high myelination co-

localize with auditory koniocortex along the posteromedial two-thirds of the 

Heschl’s gyrus (Sigalovsky et al., 2006; Dick et al., 2012).  

1.3.3 Cytoarchitecture of auditory cortex 

The primate auditory cortex is characterized with a distinctive 

cytoarchitecture: the core area displays typical features of primary cortex 

with a dense layer IV, indicating rich thalamocortical connections 

(Galaburda and Pandya, 1983). The ventral MGB projects mainly to layers 

IIIb and IV of the core whilst the dorsal MGB divisions send information to 

layers IIb of the belt and parabelt, avoiding layer IV (Hackett, 2011). 

Additionally, the core region is highly granular and myelinated, displays 

high metabolic activation patterns and stains profusely for the calcium 

binding protein, parvalbumin (Morel et al., 1993; Jones et al., 1995; Pandya, 

1995; Kaas and Hackett, 2000). These properties are most pronounced for 

A1 and least prominent for area RT (Hackett et al., 1998a).  
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 The cytoarchitectonic characteristics of the human homologue 

subfields share similarities with the core of the primate auditory cortex: all 

constituent areas show strong cytochrome oxidase, parvalbumin and 

acetylcholinesterase staining in cortical layers IIIc and IV (Rivier and 

Clarke, 1997; Clarke and Rivier, 1998; Hackett et al., 1998a; Hackett et al., 

2001; Wallace et al., 2002). The secondary subfields in medial and lateral 

HG exhibit weaker metabolic activity in layer IV than the primary subfield 

(Wallace et al., 2002). The cytoarchitectonic properties of the human 

auditory association regions are however less well defined, making 

comparisons to primate belt and parabelt regions problematic (Hackett, 

2011). Similar processing schemes have been demonstrated by diffusion 

imaging techniques in humans (Behrens et al., 2003; Behrens and Johansen-

Berg, 2005) which confirm the functional architecture within human 

auditory cortex (Upadhyay et al., 2007, 2008).  

1.3.4 Information flow within auditory cortex 

Each cortical area is characterized by a unique pattern of connections 

but appears to follow certain anatomical relationships that help understand 

the nature of the interconnections between the cortical areas: (i) a particular 

area has reciprocal connections with other areas; (ii) adjacent areas in the 

cortex are more densely interconnected than anatomically segregated areas; 

(iii) neurons within a single area share dense connections; (iv) there is a 

systematic pattern of connections in cortical laminae and sublaminae (Kaas 

and Hackett, 1998; Read et al., 2001; Winer and Lee, 2007; Lee and Winer, 

2008b; Hackett, 2011).  
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There are three major classes of cortical connections: feedforward 

projections that connect the output of one area to layer IV of another; 

feedback projections that arise from the infragranular layers of an area but 

avoid layer IV of the target area; and lateral connections that involve all 

layers and typically connect adjacent areas. These connections form a 

hierarchical network where feedforward inputs carry information from a 

lower to a higher hierarchical level and feedback projections transmit 

information from higher to lower hierarchical centres.  

 A general feature of the connectivity between the different auditory 

fields is that areas with similar thalamic inputs and cortical (usually lateral) 

connections belong to the same hierarchical level whilst areas with distinct 

thalamic inputs and clear feedforward or feedback projections are allocated 

to different hierarchical levels. In primates, along the medial-lateral axis, the 

belt region has been found to be densely interconnected with the core and 

parabelt areas, whilst the core and the parabelt regions are only weakly 

connected (Hackett et al., 1998a). The core areas send driving inputs to the 

surrounding regions in the belt but not to the parabelt areas. On the other 

hand, neurons in the parabelt project back to the core areas, possibly 

suggesting a feedback circuit (de la Mothe et al., 2006). These connectivity 

patterns are indicative of a hierarchical flow of information from core to belt 

to parabelt along the medial-lateral axis (see Figure 1.5; Kaas and Hackett, 

1998, 1999; Rauschecker, 1998). Along the rostral-caudal axis, there is 

evidence that from PAC, information flows rostrally towards auditory and 
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auditory-related areas and caudally towards the temporo-parietal region 

(Figure 1.5; de la Mothe et al., 2006; Hackett, 2011). 
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Figure 1.5: Local connections of core and belt areas in the primate.  

Left: connections of the core area, A1 (left), and lateral belt area, ML (middle) in the 

primate.  

Right: schematics of information flow along the medial-lateral axis (A1-ML-CPB) 

(core-belt-parabelt) and caudal-rostral axis in the core (A1-R-RT). Line thickness 

denotes the relative density of each projection. Dashed lines indicate feedback 

projections. Shading intensity (all panels) and large arrows (left panels) denote 

anatomical and physiological gradients along two major axes of information flow. 

Figure reproduced from Hackett, 2011. 
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1.3.5 Information flow beyond auditory cortex 

Auditory processing is not only limited to the auditory cortex but 

also extends to auditory-related areas in the forebrain. The projections 

beyond the auditory cortex derive mainly from the belt and parabelt regions 

with only sparse projections from the core (Hackett, 2011). Information 

flows out of the auditory cortex in multiple directions but is influenced by 

the topographic flow of information within the auditory cortex as described 

previously. The principal pathways in the auditory network are known as 

processing streams (Kaas and Hackett, 1999, 2000; Rauschecker and Tian, 

2000; Rauschecker and Scott, 2009), concordant with the term used to 

describe similar pathways in the somatosensory and visual domains 

(Mishkin, 1979; Ungerleider and Haxby, 1994). In the visual system in 

particular, processing streams have been extensively investigated: 

topographic connections between areas suggest the existence of two 

separate pathways known as the dorsal and ventral streams which are 

involved in the analysis of information related to ‘where’ and ‘what’, 

respectively. These pathways are also commonly known as the ‘where’ and 

‘what’ pathways.  

In the auditory system as well, there is evidence of two parallel 

processing streams that encode two different types of auditory information: 

the identity (‘what’) and the spatial location (‘where’) of the source (Kaas 

and Hackett, 1999; Romanski et al., 1999; Rauschecker and Tian, 2000; 

Tian et al., 2001). A rostrally directed stream with auditory-related targets in 

the temporal pole, ventral, rostral and medial prefrontal cortex, rostral 
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cingulate, parahippocampal cortex and the amygdala processes ‘what’ 

information. The ‘where’ information is processed by a caudally-directed 

stream that flows out from the caudal belt and parabelt regions into the 

temporoparietal junction, posterior parietal and secondary visual cortex, 

caudal and dorsal prefrontal areas, dorsal cingulate and parahippocampal 

areas (Hackett, 2011). There are two other less well defined streams that 

flow laterally from the belt and parabelt areas to the upper bank of the 

superior temporal sulcus and medially into insular areas in the lateral sulcus 

(Galaburda and Pandya, 1983; Hackett et al., 1998b; de la Mothe et al., 

2006). 

1.3.6 Tonotopy 

Orderly topographic information processing pathways are a feature 

of several sensory cortical systems: neurons in the visual cortex show 

retinotopy, i.e., a one-to-one mapping of visual input from the retina to the 

cortex; and, there is an orderly representation of different body parts in the 

somatosensory cortex which gives rise to the cortical homunculus. The 

auditory system displays a similar mapping of frequency from the level of 

the cochlea to the auditory cortex, and this frequency-place code is referred 

to as tonotopy. The mechanical properties of the basilar membrane result in 

an orderly arrangement of a bank of bandpass filters that are tuned to 

progressively higher frequencies from the apex to the base of the membrane 

(von Békésy, 1960). This mapping of frequency to spatial position is 

preserved in the lemniscal ascending auditory pathway including the central 

nucleus of the IC, the ventral division of the MGB and the recipient cortical 
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fields. The non-lemniscal pathways that project from the dorsal or 

magnocellular divisions of the MGB, however, are not tonotopically 

mapped. Several cortical areas show tonotopic frequency gradients with the 

reversal of gradients often used to define the border between the distinct 

subfields.  

Tonotopic maps in human auditory cortex have been demonstrated 

using fMRI (Formisano et al., 2003; Schönwiesner et al., 2002; Talavage et 

al., 2004; Langers et al., 2007; Humphries et al., 2010, Woods et al., 2010; 

Da Costa et al., 2011; Striem-Amit et al., 2011; Langers and van Dijk, 2012; 

Moerel et al., 2012; Herdener et al., 2013; Saenz and Langers, 2013). In 

macaques, fMRI has been useful to define tonotopic maps as well (Petkov et 

al., 2006; Baumann et al., 2010; Tanji et al., 2010; Baumann et al., 2013). 

Although it is possible to localize the boundary between fields A1 and R 

using tonotopy, the relation between frequency reversals and the location of 

the core koniocortex is still unclear. Probabilistic post-mortem 

cytoarchitectonic maps, also fail to clarify the localization (Morosan et al., 

2001). Tonotopy can distinguish core areas A1, R and RT from each other 

and adjacent belt areas from each other but does not allow core and belt to 

be distinguished. 

In primates, the core area A1 displays a tonotopic gradient from high 

to low along the rostral to caudal axis whilst subfield R shows a reverse 

gradient from low to high and the gradient in RT is similar to A1 (Figure 

1.6). In spite of intense research on the topic, the exact configuration of the 

tonotopic gradients is currently under debate. Figure 1.6 demonstrates the 
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different proposed configurations in macaque and human auditory cortex. 

Accurate characterization of tonotopic maps in humans is limited due to the 

poor spatial resolution of fMRI relative to the size of the auditory subfields 

and the lack of a clear consensus regarding the precise location of the 

primary auditory cortex. A detailed discussion of the topic is beyond the 

scope of the thesis; these issues are aptly summarized by Baumann et al. 

(2013) and Saenz and Langers (2013).  
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Figure 1.6: Configurations of auditory cortical organization in humans and 

non-human primates.  

 

(A) The two main configurations of auditory core fields under debate (left, middle) 

in comparison with the “oblique” configuration proposed by the authors (right). The 

main frequency response areas based on the summary of recent evidence 

(Formisano et al.,2003; Humphries et al., 2010; Woods et al.,2010; Da Costa et 

al.,2011; Striem-Amit et al.,2011; Langers and van Dijk,2012) are superimposed 

over this configuration. The suggested directions of the main gradient axes are 

indicated with green arrows next to each configuration. Additional anterior and 

posterior low frequency preference areas suggested by some studies are marked 

by red dashed lines.  

(B) Core fields and frequency preference areas in the superior temporal plane of 

macaque and human according to oblique configuration (left). Location of auditory 

belt fields in macaques and presumed location of belt fields in humans (right). Main 

gradient directions from low to high of the frequency response areas are indicated 

with green arrows left of each scheme. IS, intercalated sulcus; AG, annectant 

gyrus; CS, circular sulcus; FTS, first transversal sulcus. Figure reproduced from 

Baumman et al., 2013. 
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1.3.7 Neurophysiological correlates of information flow 

The topographical pattern of anatomical pathways also influences 

the physiological properties of the various auditory cortical subfields. One 

distinctive feature of auditory cortical processing is that the core areas 

appear to be specialized for encoding basic spectrotemporal features whilst 

the belt and parabelt areas process more complex acoustic attributes. This is 

exemplified in the case of frequency processing where simple sinusoidal 

stimuli are robustly encoded by core areas whilst the belt and parabelt areas 

respond more strongly to complex sounds and conspecific vocalizations 

(Rauschecker et al., 1995; Rauschecker, 1998; Rauschecker et al., 1997; 

Rauschecker and Tian, 2000; Tian et al., 2001).  

Another prediction of the core-belt-parabelt serial processing model 

is that response latencies would increase, spectral integration (tuning 

bandwidth) would increase, and temporal precision would decrease 

(Rauschecker, 1998). Temporal precision relates to entrainment to periodic 

temporal events and there is evidence that it systematically decreases from 

A1 to ML to CPB (Hackett, 2011). Thus, there is a general rule that neurons 

become more broadly tuned and more temporally sluggish along the core-

belt-parabelt axis, consistent with the information processing hierarchy from 

core to belt to parabelt. Within the core, however, latencies increase from 

A1 to R to RT (Recanzone et al., 2000; Bendor and Wang, 2008; Kusmierek 

and Rauschecker, 2009). This trend is also apparent in human auditory 

cortex where responses in medial HG are usually recorded ~20ms post 

stimulus onset, whilst central and lateral HG take longer time to respond, 
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with latencies of ~50ms and ~60-75ms, respectively (Liegeois-Chauvel et 

al., 1990). Responses in PT peak ~100ms (Brugge et al., 2008; Liégeois-

Chauvel et al., 1991) and the latencies rise and become more variable in the 

STG and parietal operculum (Liégeois-Chauvel et al., 1991). There is also 

evidence for back-projections from the STG to HG (Brugge et al., 2003), 

which may serve a modulatory function.  

1.3.8 Spectrotemporal receptive fields 

Functional properties of auditory cortical neurons can be represented 

in terms of their spectrotemporal receptive fields (STRFs; Aertsen and 

Johannesma, 1981a, 1981b; Eggermont et al., 1981). The STRF is a 

summary of the cell’s response properties and is represented by a kernel in 

the spectral and temporal domain and can be measured in many ways 

(Calhoun and Schreiner, 1995; deCharms et al., 1998). STRFs reflect both 

excitatory as well as inhibitory response characteristics and provide 

important clues to information processing in the cortical neurons (Elhilali et 

al., 2007).  

A popular method for measuring STRFs is the “ripple analysis 

method” (Kowalski et al., 1996; Klein et al., 2000) where ripples refer to 

sinusoidally modulated spectrotemporal envelopes whose properties can be 

parameterized. Neurons in PAC respond strongly to ripple stimuli and 

exhibit selectivity to a narrow range of parameters that reflects their STRF 

characteristics. By varying the ripple velocity and density over a wide range 

of parameters, a complete description of the cell’s spectrotemporal response 

properties can be obtained.  
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Interesting insights into auditory processing have been obtained 

using this method. Elhilali and colleagues (2007) demonstrated that neurons 

show stable STRFs to certain acoustic features when these are not 

behaviourally relevant but these change rapidly if the stimuli are made 

behaviourally relevant (Fritz et al., 2003, 2005, 2010; David et al., 2012). 

STRFs measured in awake monkeys have been shown to display on-

excitation as well as off-excitation, providing an elegant neural code for 

spectrotemporal integration as in the case of natural sounds and conspecific 

vocalisations (Shamma & Symmes, 1985; Pelleg-Toiba & Wollberg, 1989; 

deCharms et al., 1998). STRFs have also been computed based on MEG 

responses to analyse encoding of speech in human auditory cortex (Ding 

and Simon, 2012). 

 The above section (1.3) provided a general framework of the 

functional anatomy of the auditory cortex, highlighting fundamental 

principles of information processing, such as the co-existence of serial and 

parallel processing streams and gradation of physiological properties along 

the ascending auditory pathways. These provide a foundation for a proper 

understanding of auditory processing in response to complex signals used in 

auditory scene analysis research considered in the following section. 

1.4 Stimuli used in auditory scene analysis 

Several stimuli and paradigms have been employed to study auditory 

scene analysis. These range from a simple sequence of two alternating tones 

(streaming), to a sequence of tones whose probability of occurrence is 

varied to elicit a mismatch response (oddball stimuli), to multi-tone stimuli 
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with embedded targets (informational masking stimuli), to complex 

naturalistic stimuli (acoustic textures) as well as natural vocalizations 

including speech. These stimulus paradigms have been most successful in 

uncovering the principles of auditory segregation. The acoustic details of 

each stimulus are presented in the next section followed by a review of the 

literature and findings based on the corresponding stimulus in section 1.5.  

1.4.1 Streaming  

Streaming refers to a stimulus as well as a phenomenon that is based 

on a sequence of two pure tones (A and B) of different frequencies 

alternating in time as shown in Figure 1.7. This pattern of tones forms 

triplets (ABA_ABA_ABA_ …) that are separated by short silent intervals 

and repeat over time. Although it appears to be a very simple acoustic 

pattern, this stimulus has distinct perceptual effects that have made it one of 

the most commonly used signals. 
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Figure 1.7: A schematic of the streaming stimulus.  

The streaming stimulus consists of two tones, A and B, that alternate in time and 

are separated by a frequency separation (Δf). Figure reproduced from Carlyon, 

2004.  
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At slow rates of presentation, the ABA triplets are perceived as 

repeating units with a galloping rhythm; but as the sequence becomes faster, 

the high frequency tones separate from the low frequency ones into two 

distinct isochronous sequences – one consisting of a slow sequence of high 

tones and the other, a faster sequence of low tones. This phenomenon is 

referred to as ‘streaming’ and the two sequences are called ‘streams’ (van 

Noorden, 1975; Bregman, 1990). Although the two streams occur at the 

same time, they are perceived independently. However, one can focus their 

attention to one stream only which forms the foreground whilst the other 

stream is relegated to the background.  

Another feature of streaming is observed by varying the frequency 

difference between the two tones. As the spectral separation is increased, the 

percept tends to change to that of two separate streams. Thus, by varying the 

frequency separation and the rate of presentation, the perceptual effects can 

be modulated from that of a single ‘integrated’ percept to two divergent 

‘segregated’ percepts.  

Apart from spectral cues, non-spectral factors also influence stream 

segregation (Moore and Gockel, 2012). These cues include rate of 

fluctuation of temporal envelope (Grimault et al., 2002), timbre (Iverson, 

1995), phase spectrum (Roberts et al., 2002), fundamental frequency (F0; 

Vliegen and Oxenham, 1999), lateralization cues such as interaural time 

differences (ITD; Darwin and Hukin, 1999; Stainsby et al., 2011), onset and 

offset asynchrony (Darwin and Carlyon, 1995), harmonicity (Moore et al., 

1986), and ear of entry (Darwin and Carlyon, 1995). 
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The formation of streams is a type of auditory scene analysis – when 

the streams are segregated, the auditory system perceives two sound sources 

in the environment instead of one. Although this is a simplistic 

representation of the complex type of segregation performed in natural 

environments, the paradigm has been used extensively to study sequential 

grouping and illuminated several key principles of auditory perceptual 

organization.  

1.4.2 Oddball stimulus 

Another popular experimental tool to study auditory scene analysis 

is based on a sequence of two tones where the probability of occurrence of 

the two tones is manipulated: a standard tone is presented repeatedly amidst 

a few deviant tones that occur more rarely. This sequence of tones is known 

as an oddball stimulus where the oddball refers to the deviant tones.  

This stimulus is classically used in electrophysiological studies in 

both humans and animals, usually in passive listening conditions. The tones 

elicit a clear evoked response which is averaged separately to obtain event 

related potentials for the standard and deviant tones respectively. The 

hallmark of perceptual responses is the significantly larger response for the 

deviant compared to the standard stimuli. The difference between the event 

related waveforms for the deviants and the standards is measured as the 

mismatch negativity (MMN) response. The MMN is defined as a negative 

waveform in the deviant ERP response that occurs 150-250ms after sound 

onset. The magnitude of MMN response varies as a function of the 

dissimilarity between the standard and the deviants as shown in figure 1.8. 
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Figure 1.8: MMN response as a function of frequency change.  

Left: The responses to deviant tones with increasing frequencies are indicated in 

blue while the response to the standard (1000Hz) is shown in dotted black lines. 

Right: The difference between the deviant and standard response is plotted for 

each condition on the right. The magnitude of the MMN response increases as a 

function of the (spectral) dissimilarity between the standard and deviant tones.  
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This paradigm is especially pertinent for studying auditory scene 

analysis as the greater response to the deviant tone represents the encoding 

of a novel object in the acoustic environment (Näätänen et al., 1978, 2007). 

It has been widely adopted especially in clinical settings as well as special 

populations including newborn infants (Winkler et al., 2003b) and patients 

in permanent vegetative states (Boly et al., 2011) as MMN can be elicited 

even in the absence of task-directed attention. The MMN has been 

interpreted to reflect different kinds of mental representations (Winkler, 

2007) but a prominent explanation is that it represents an error in predicting 

the incoming acoustic stimuli. This is discussed in greater detail in section 

1.5.2 alongside a description of empirical results and theoretical models 

based on this stimulus paradigm. 

An associated positive response often observed in MMN 

experiments is the P3 which comprises two distinct components: P3a and 

P3b. In contrast to MMN which reflects a pre-attentive automatic process, 

P3 requires active attentional processes. P3a is said to originate from 

stimulus-driven frontal attentional mechanisms during task processing 

whilst the P3b is related to subsequent memory processing with sources in 

the temporo-parietal cortex (Polich, 2007).   

1.4.3 Informational Masking  

In contrast to streaming signals that only comprise two frequencies 

as shown in Figure 1.9A, a more spectrally complex signal known as 

‘informational masking’ (IM) stimulus has been developed to model natural 

acoustic scenes as shown in Figure 1.9B. The stimulus has been adopted by 
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several laboratories to explore aspects of auditory segregation that go 

beyond the primitive mechanisms required for streaming. IM refers to a type 

of non-energetic or central masking that is associated with an increase in 

detection thresholds due to stimulus uncertainty and target-masker similarity 

that is distinct from peripheral energetic masking (Pollack, 1975; Durlach et 

al., 2003). These multi-tone masking experiments require listeners to detect 

tonal target signals in the presence of simultaneous multi-tone maskers, 

often separated by a ‘spectral protection region’ (a certain frequency region 

around the target with little masker energy) that promoted the perceptual 

segregation of the target from the masker tones. 
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Figure 1.9: Schematic of the informational masking paradigm.  

(A) Illustration of the streaming stimulus where the blue tones are the target.  

(B) The IM stimulus consists of a target tone (blue) that is repeated regularly in the 

presence of other masking tones (black) in the background. The target tones are 

separated from the masking tones by a protective spectral region centred on the 

target frequency. Figure reproduced from Dykstra and Gutschalk, 2013. 
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1.4.4 Complex naturalistic stimuli 

In recent years, there has been an increasing interest in the synthesis 

of signals that capture the properties of natural acoustic scenes more 

faithfully than streaming or multi-tone burst sequences as discussed 

previously. This line of work is motivated by a multidisciplinary interest in 

auditory scene analysis with increasing crosstalk between the fields of 

neuroscience, machine hearing, signal processing and audio engineering.  

1.4.4.1 Acoustic Textures  

From first principles, an auditory object can be designed based on a 

number of acoustic features that are constant within a given spectrotemporal 

space that defines the object. Based on this approach, Overath and 

colleagues (2008) designed an ‘acoustic texture’ stimulus based on 

randomly distributed linear frequency modulated ramps with varying 

trajectories as depicted in figure 1.10. The percentage of coherent 

spectrotemporal modulation, i.e., the proportion of ramps with identical 

direction and trajectory were systematically controlled, producing acoustic 

textures with different levels of spectrotemporal coherence. Boundaries 

between textures were created and their magnitude varied by juxtaposing 

acoustic textures of different coherence levels. In such a stimulus, it is 

possible to parametrically control and study the emergence of a novel object 

characterized by a different signature in frequency-time space.  
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Figure 1.10: Spectrogram of the acoustic texture stimulus.  

Example of a block of sound with four spectrotemporal coherence segments 

showing absolute coherence values for each segment and the corresponding 

change in coherence between the segments. The absolute value of coherence as 

well as the change in coherence from one segment to another is indicated on the 

bottom. Figure reproduced from Overath et al., 2010. 
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1.4.4.2 Synthetic sound textures  

McDermott and Simoncelli (2011) recently developed a synthetic 

‘sound texture’ stimulus based on statistical measurements of natural 

stationary signals. Stationary signals are constant in their statistical 

parameters over time. They are based on sound textures in the real world 

such as rainfall, stream of water, swarm of insects, or the rustling of leaves 

that are characterized by temporal homogeneity, i.e. any two samples of 

such textures recorded at different times sound alike. Conceptually similar 

to visual textures that have been studied for decades (Julesz, 1962), these 

sound textures are formed from the superposition of many similar acoustic 

events, which are characterized by aggregate statistical properties. They 

processed such real-world textures with an auditory model containing filters 

tuned for sound frequencies and their modulations, and measured the 

statistics of the resulting decomposition that summarize the qualities of a 

sound. Textures provide a compact representation format for encoding 

sounds and were synthesized to match the statistics of natural sounds as 

shown in figure 1.11. 

These synthetic stimuli provide another controlled approach for 

studying auditory scene analysis. The utility of this particular stimulus is 

that any sample of natural sound such as human speech can be taken as the 

input and a model of textures that captures the statistics of the chosen input 

can be produced (McDermott et al., 2013). This approach not only informs 

an investigation into auditory segregation capabilities but also allows a 
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better understanding of the encoding and analysis of such pseudo-natural 

sounds in the auditory system. 
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Figure 1.11: Synthetic sound textures.  

Spectrograms of three sound textures (stream of water, fire, and insects) are 

shown with the original spectrogram on the left and the spectrogram of the 

synthetic texture on the right. Figure reproduced from McDermott and Simoncelli, 

2011. 
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1.4.5 Speech and Animal vocalizations 

Traditional speech recognition tasks involve two distinct speech 

samples spoken by different talkers and have been used in a variety of 

behavioural (Cherry, 1953), imaging (Ding and Simon, 2012) as well as 

multi-electrode surface recordings from human auditory cortex (Mesgarani 

and Chang, 2012) amongst other paradigms. In animal studies, spectrally 

rich conspecific vocalizations are commonly used, e.g. in tree frogs (Velez 

and Bee, 2011), zebra finches (Schneider and Woolley, 2013), marmosets 

(Miller et al., 2010) amongst others. 

Speech recognition and speech intelligibility in noisy backgrounds 

represent a practical problem that affects a significant percentage of the 

population. It is also of clinical interest as speech recognition in busy and 

crowded settings becomes worse with aging, hearing loss as well as a 

number of neurological diseases such as dementia, dyslexia, schizophrenia 

amongst others. A number of standardized speech intelligibility tests have 

been developed such as the Modified Rhyme Test (MRT) which consists of 

a set of fifty six-word lists of rhyming or similar-sound monosyllabic 

English words where each word is constructed from a consonant-vowel-

consonant sound sequence (e.g. went, sent, bent, tent, rent, dent; hold, cold, 

gold, fold, told, sold). The six words in each list differ only in the initial or 

final consonant sound and the task of the listener is to identify which of the 

six words was actually spoken by the talker. A carrier sentence is usually 

used. The MRT measures errors in discrimination of both the initial as well 

as final consonant sounds.  

http://www.meyersound.com/support/papers/speech/carrier.htm
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Figure 1.12: Examples of speech stimuli used to study segregation.  

Spectrograms of two different CRM speech stimuli spoken by speakers 1 (above) 

and 2 (below) are shown. The acoustic waveform for each speech stimulus is 

indicated on the top of each spectrogram. Figure reproduced from Mesgarani and 

Chang, 2012. 
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Figure 1.12 illustrates the spectrograms of two speech samples spoken 

by different speakers. These stimuli are taken from a commonly used speech 

corpus for multi-talker communication, known as the Coordinate Response 

Measure (CRM; Moore, 1981; Bolia et al., 2000). The CRM task developed 

by Bolia and colleagues is an extension of standardized tests such MRT with 

particular relevance for military environments. It consists of a call sign (e.g. 

“tiger” in Figure 1.12A) and a colour-number combination (e.g. “red-two” 

in Figure 1.12B) embedded in a carrier phrase. The listener is assigned a call 

sign and is required to indicate the colour-number combination spoken by 

the talker whose speech contained his or her call sign. In the presence of 

multiple talkers speaking simultaneously with each speaking a different call 

sign and a different colour-number combination, this task represents a scene 

analysis problem as the listener must be able to discriminate between his or 

her call sign from a set of simultaneous call signs. This provides a measure 

of the listener’s ability to selectively attend to a single channel whilst 

rejecting other irrelevant channels.  

1.5 Literature review 

This section presents a review of the experimental findings obtained 

from each stimulus paradigm as described in section 1.4 and is further 

organized in terms of evidence using different experimental techniques. 

Each stimulus section covers the results from psychophysics (human and 

animal behaviour), electrophysiological recordings in animals and direct 

intra-cortical or surface recordings in humans, non-invasive human 

functional imaging based on fMRI, MEG and EEG as well as computational 
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modeling. These approaches are complementary and the aim is to provide a 

holistic description of the current state of research in auditory scene 

analysis. 

1.5.1 Streaming 

The streaming paradigm is the most commonly used tool to study 

auditory scene analysis. First investigated in the 1970s by Bregman and 

colleagues (e.g. Bregman and Campbell, 1971), the stimulus has driven a lot 

of research on the mechanisms of auditory grouping and informed several 

models of segregation. The following sections briefly describe the results 

based on this stimulus from a variety of experimental techniques. 

1.5.1.1 Psychophysics  

Fission and fusion boundaries 

Leon van Noorden examined the behaviour of human listeners in 

response to the repeating triplets (ABA_) of the streaming signal and 

characterized perceptual boundaries that govern integration, segregation and 

bistability (van Noorden, 1975). These boundaries are demarcated as shown 

in figure 1.13. The temporal coherence boundary is a limit beyond which 

listeners can never hear one stream whilst the fission boundary is limit 

beyond which listeners can never hear two streams. The area between the 

two curves represents an ambiguous region where the percept is bistable and 

switches between that of one or two streams.  
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Figure 1.13: Perceptual boundaries in streaming.  

The red dots form the temporal coherence boundary whilst the crosses indicate the 

fission boundary. Figure reproduced from Bregman, 2008. 
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 These data highlight the important roles of frequency separation and 

tone presentation rate in determining the perceptual state of the listeners. A 

segregated stream percept is commonly obtained under conditions of high 

frequency separations and faster speeds of presentation. The effect of 

presentation rate, however, was negligible when trying to segregate the 

streams. The temporal coherence boundary however increases markedly 

with the presentation period and it was shown that the most important 

temporal factor governing this boundary is the time interval between 

successive tones of the same frequency rather than the interval between 

tones of different frequency or the actual duration of the tones (Bregman et 

al., 2000). 

 Furthermore, these two perceptual boundaries also reflect different 

mechanisms of segregation. A single stream percept is susceptible to 

interference by primitive, bottom-up grouping mechanisms whilst a top-

down process that employs selective attention is used when trying to hear 

separate high and low frequency streams.  

Buildup of streaming 

 Another commonly observed effect in streaming paradigms is the 

gradual increase in the tendency of listeners to report a segregated percept 

with repeated presentation of the streaming signal (Bregman, 1978; Anstis 

and Saida, 1985). Usually, the dominant percept at the beginning of the 

stimulation is that of a single stream and it takes some time for the percept 

to break and for listeners to report segregation. The time taken for a 
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streaming percept to emerge is known as the buildup time and is usually on 

the order of a few seconds. However, it is important to note that the 

segregation tendency can be partially or completely reset by sudden changes 

in the properties of the sequence or by switches in attention. The reset due to 

sudden changes is suggested to reflect the activation of a new sound source 

and causes the perceptual system to return to its original default state of a 

single integrated percept (Moore and Gockel, 2012). 

 Anstis and Saida (1985) attributed the buildup effect of streaming to 

frequency-shift detectors which integrate successive tones into a single 

stream. With repetition of the stimulus, these detectors are suggested to 

habituate and the breakdown of their integrative function results in the 

formation of two separate streams. Another suggestion put forward by 

Bregman (1990) is that the default perceptual state is that of one stream and 

stimulus repetition increases the evidence in favour of two distinct sources 

of sound that leads to the formation of two different streams.  

Bregman’s model of auditory streaming 

 Based on a number of experiments on streaming, Bregman (1990) 

formulated a model of auditory scene analysis. He postulated the existence 

of two types of brain mechanisms involved in grouping. The first is a 

primitive, bottom-up mechanism that is involved in encoding the sensory 

attributes of the incoming stimuli and grouping them on the basis of Gestalt 

principles such as continuity, common fate and good continuation amongst 

others.  The second mechanism consists of a set of higher-level processes or 
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schemas that are usually learned through exposure to the acoustic 

environment. These schemas allow recognition of patterns in the 

environment and allow recognition of familiar words, languages, speakers, 

melodies amongst others. They can operate in conjunction with attention, 

for instance, when following a specific person’s voice in a crowded room.  

 These ideas have guided auditory scene analysis research over the 

past few decades but fall short of providing detailed description of the actual 

physiological mechanisms and the neural substrates involved in each kind of 

grouping process. Bregman’s work has been taken forward in a number of 

physiological experiments in both humans and animals that have now shed 

light on the mechanistic bases of auditory streaming. These are discussed in 

greater detail in the following sections.  

Bistability 

 Another significant facet of the streaming paradigm is the ambiguity 

in perceptual reports of the listeners for intermediate values of frequency 

separation and presentation rate. This defines an ‘ambiguity region’ where 

the percept often flips between one or two streams (van Noorden, 1975). In 

figure 1.13, this corresponds to the area between the two perceptual 

boundary curves and results in alternation of the percept between one or two 

streams. This is analogous to many visual ‘multistable’ phenomena where 

the same stimulus results in ambiguous and mutually incompatible 

perceptual reports like the Necker cube (Necker, 1832) or Rubin’s face/vase 

illusion (Leopold and Logothetis, 1999; Pressnitzer et al., 2011, 2012).  
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Bistability in streaming is almost always observed over a wide range 

of stimulus parameters (Denham and Winkler, 2006; Kashino et al., 2007). 

The flips, however, do not occur in a regular manner as it has been found 

that sometimes listeners do not report hearing both percepts at the same time 

(Pressnitzer and Hupe, 2006) whilst other studies have indicated that 

listeners are conscious of both streams at the same time (Bendixen et al., 

2010). Pressnitzer and Hupe (2006) reported that the distribution of switches 

in the perceptual states during streaming is similar to that for visual 

multistability and that the dynamics of visual and auditory switching are 

almost identical when measured in the same group of listeners. Although the 

switching occurs on a random basis, it can be influenced by behavioural 

goals or task instructions.  

Attention and streaming 

 The predominant view of the role of attention in streaming is that it 

is involved in selection of (and switching between) streams rather than in 

the process of stream formation itself which is designated as a primitive 

bottom-up process. In this object-based view of attention in auditory scene 

analysis, attention operates at the level of objects (or streams) that are 

already grouped by downstream sensory processing mechanisms. However, 

this view is contradicted by behavioural findings that paying attention to the 

high frequency tone for instance results in a much smaller frequency 

separation for segregation (van Noorden, 1975).  
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Psychophysically, the major focus of research is on the role of 

attention in the buildup of streaming. Carlyon and colleagues (2001) 

examined this by using a dual-task paradigm where the streaming signal is 

presented to the left ear of the listeners for 21 seconds whose task is to 

indicate whether they heard one or two streams. In a baseline condition, no 

sounds were presented to the right ear whilst in the dual-task condition, 

listeners were required to detect changes in the intensity of white noise 

presented to the right ear for the first 10 seconds of the sequence, and 

required to switch their attention to the left ear and the streaming task after 

these 10 seconds. The control condition presented the same stimuli but the 

task was based only on the streaming signals in the left ear. The results from 

the main condition of interest (task-switching) demonstrate that the 

probability of hearing two streams was significantly reduced after diverting 

attention from the right to the left ear compared to the control condition. The 

same effects were found even if attention was distracted using a visual or a 

numerical task (Carlyon et al., 2003). In a similar vein, Cusack et al. (2004) 

found that buildup of streaming is reset if attention is briefly diverted away 

from the streaming signals presented in the left ear.  These findings show 

that the buildup of segregation depends on attention such that the tendency 

to report streaming is reduced by an absence of attention or switch in 

attention.  

Effect of temporal regularity  

 A recent line of investigation has focused on the role of temporal 

regularity as a grouping cue in auditory scene analysis. The classical 
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streaming stimulus consists of tones presented at regular rates and it is not 

certain to what extent the regularity of the sequence affects perception. 

Bendixen and colleagues (2010) assessed the influence of pattern regularity 

in a streaming paradigm where listeners were required to indicate whether 

they heard one or two streams. The frequency and intensity of the tones was 

jittered by a small amount and regular patterns were imposed on these two 

features in either the A tones or B tones or both. Bistable percepts were 

reported as usual but it was observed that regular patterns in either the A 

tones or B tones, or both, increased the mean duration of the two-stream 

percepts relative to the condition when the patterns were irregular. The 

duration of single-stream percepts was not affected by this manipulation. 

The authors concluded that temporal regularities likely recruit central 

mechanisms that tend to stabilize auditory streams once they have been 

formed on the basis of primitive low-level mechanisms.  

Recent work has further corroborated the role of temporal regularity 

in stream segregation (Andreou et al., 2011; Rajendran et al., 2013). 

Andreou and colleagues (2011) found that temporal regularity serves as an 

effective cue for segregation but its effect is limited to fast presentation rates 

(4-10 Hz) and low frequency separation (2 semitones) between the two 

tones of the streaming sequence. Rajendran et al. (2013) also employed a 

streaming paradigm where a limited amount of temporal jitter was added to 

the B tones and found that the percentage of trials associated with a two 

stream percept significantly increased with increase in temporal jitter.  
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1.5.1.2 Human functional imaging 

Early behavioural work on auditory streaming since the 1970s 

provided a solid theoretical foundation for the assessment of neural 

correlates of streaming with the advent of modern imaging methods such as 

EEG, MEG and fMRI. This section provides a brief review of research on 

stream segregation based on these imaging techniques (Melcher, 2009; 

Gutschalk and Dykstra, 2013). 

 

ERP evidence 

 Scalp-recorded ERPs were used to examine Bregman’s model of two 

mechanisms involved in streaming: a bottom-up, pre-attentive grouping 

mechanism and a higher-order attention-dependent buildup mechanism.  

Winkler et al. (2005) used streaming signals that contained frequent 

omissions of the tones at early and late phases of the sequence to analyze 

whether the topography of the resulting ERPs support Bregman’s model. 

Stimulus parameters were chosen to evoke either an integrated or a bistable 

percept in two separate conditions and listeners were required to indicate 

whether they heard one stream or not. A low tone was omitted to elicit 

deviant responses in both the early and the late phase of the sequence and 

results indicated early as well as late frontocentral negativity for the deviant 

responses in the ambiguous condition. The early difference waveform (N1) 

was elicited only when the listeners heard a single percept whilst the late 

difference waveform (P2b) was observed only when two streams were 

reported. Also, the P3a component that is related to attentional switching 

was evoked, presumably when the listeners heard the ambiguous percept.   
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Similarly, Snyder and colleagues (2006) observed that auditory 

evoked potentials, specifically the P2 and N1c in response to the streaming 

sequence increased in amplitude with increasing frequency separation and 

correlated with behavioural measures of streaming. Furthermore, a slowly 

rising positivity was also found through the course of the sequence whose 

time course varied similarly to the buildup of streaming.  

 Additionally, Sussman and colleagues combined the MMN and 

streaming paradigms to demonstrate that deviant stimuli embedded within a 

high-tone stream resulted in a mismatch response during the perception of 

two streams (Sussman et al., 1997; 2007). Also, the deviants occurred more 

at the end of sequence rather than the beginning, in line with the time course 

of the buildup. Significantly, this pattern of results was noticed whether the 

listeners attended to the stream or not, suggesting that attention is not 

required for buildup unlike the previously discussed behavioural studies. 

This result may be explained by the fact that attention only modulates 

buildup in the absence of robust segregation cues such as large frequency 

separations as used in the study (Sussman et al., 2007). Sussman, Winkler 

and colleagues validated the ERP correlates of streaming using the 

mismatch paradigm in adults (Winkler et al., 2003a), school-age children 

(Sussman et al., 2001) as well as newborn infants (Winkler et al., 2003b), 

thus demonstrating the utility of this approach.  

MEG evidence 
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 Gutschalk and coworkers (2005) measured auditory evoked 

neuromagnetic fields in response to the streaming signal in two separate 

experiments where the stimulus parameters were chosen to promote either 

an integrated/segregated percept or a bistable percept respectively. The first 

experiment revealed that changes in frequency separation and inter-stimulus 

interval (ISI) affected the magnitude of the auditory evoked fields in a 

manner that correlated with the degree of perceived stream segregation, i.e., 

the magnitude of P1m and N1m evoked by the B tones in the repeating 

triplet increased with larger frequency separations. This trend was also 

observed in the behavioural data where high correlations were found 

between the magnitudes of the P1m and N1m evoked fields and the reported 

ease of streaming. The second experiment, where an ambiguous percept was 

induced showed similar results to experiment 1: the magnitude of P1m and 

N1m covaried with the perceptual state and was larger for two vs. one 

stream percepts. Dipoles were fitted to the two evoked fields and were 

found to be localized in the non-primary auditory cortex in a majority of the 

subjects, without any significant lateralization of the sources.   

fMRI evidence 

 Functional MRI has also been adopted to investigate the neural bases 

of auditory stream segregation. Although the poor temporal resolution of 

fMRI is too poor to track the fast dynamics of perceptual states during 

streaming, its high spatial resolution allows the examination of the brain 

regions that mediate streaming. 
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Figure 1.14: BOLD activation in PT for a contrast between 2 vs. 1 streams.  

Group average data is displayed on a sagittal (x = -52) and axial (z = 13) section. 

Location of Heschl’s gyrus is indicated in the axial section on the right. Figure 

reproduced from Deike, 2004. 

 

  

 

 

 

 

 



83 

 

Deike and colleagues (2004) used a variant of the streaming 

paradigm that consisted of harmonic tones with alternating spectral 

envelopes, or timbres (organ-like and trumpet-like). Listeners were 

instructed to detect low-probability targets that were distributed in either 

stream. Analysis of BOLD activity for a two stream vs. one stream contrast 

revealed significant clusters in the left superior temporal gyrus, posterior to 

the Heschl’s gyrus as shown in figure 1.14. Analysis of individual auditory 

fields showed increased activity in the left posterior fields T2 and T3 for the 

same contrast. These data suggest that the left auditory cortex is involved in 

segregation of sounds based on spectral cues.  

In another fMRI study, however, Cusack (2005) did not find any 

differences in activation in the auditory cortex when comparing BOLD 

activity during the percept of two vs. one stream in the ambiguous 

condition. Listeners were required to indicate whether they heard one or two 

streams where the stimulus parameters were modulated to result in a 

bistable percept. Significant difference between the two conditions was 

found instead in the parietal cortex, in the intraparietal sulcus (IPS) as 

shown in figure 1.15. This was the first evidence that areas outside the 

conventional auditory system may have a role in auditory streaming. Cusack 

interpreted the IPS activity to reflect attentional switching between the two 

streams in the bistable state. However, it is not certain whether the IPS 

activity is a cause or consequence of the perceptual shift from one to two 

streams (Shamma and Micheyl, 2010). These results, however, make sense 

in light of the role of IPS in visual binding (Xu and Chun, 2009) and were 
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further corroborated by Hill and colleagues (2011) who showed an effect of 

perceptual state during switching in the IPS. 
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Figure 1.15: Intraparietal sulcus activation for a contrast of two vs. one 

streams.  

 

Regions activated when sound was presented and task performed, relative to 

silence (red–yellow–white colours). When the percept was of 2 streams rather than 

1, a right posterior IPS region was activated in the whole-brain analysis (green–

yellow–white) and an ROI analysis found activity in the anterior IPS (as indicated 

by the light green shading). Figure reproduced from Cusack, 2005. 
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In another fMRI experiment on streaming, Wilson and coworkers 

(2007) scanned listeners while they reported their perception of sequences 

of alternating-frequency tone bursts separated by 0, 1/8, 1, or 20 semitones. 

They observed that at the null and small frequency separations, the 

sequences were heard as one stream with a perceived rate equal to the 

physical tone presentation rate. The corresponding BOLD activity was 

measured in the auditory cortex and found to be phasic in nature, with 

significant peaks at the onset and offset of the sequences. However, at larger 

frequency separations, BOLD activity related to the two segregated streams 

was more sustained and larger in magnitude. These results are consistent 

with an interpretation that the modulation of fMRI activity as a function of 

frequency separation mediates the encoding of simultaneous changes in 

perceived rate and the perceptual organization of the sequences into auditory 

streams.  

Kondo and Kashino (2009) used an event-related fMRI design to 

probe the temporal dynamics of brain activity as a function of the direction 

of perceptual reversals, i.e. from one to two-stream percept and two to one-

stream percept. They used different frequency separations and found that 

irrespective of the magnitude of the spectral separation, activations in the 

MGB and PAC were correlated with individual differences in perceptual 

predominance in streaming. This was determined by computing the 

correlation between the proportion of single-stream predominant durations 

and temporal precedence of BOLD activity in a region-of-interest analysis 

based on the MGB and PAC. The direction of the switches affected the 

BOLD activity in the MGB and the PAC asymmetrically: MGB was 
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activated earlier during switching from a non-predominant to predominant 

percept whilst PAC was activated earlier during switching in the opposite 

direction from a predominant to non-predominant percept. These data 

provide crucial evidence supporting the role of feedfoward and feedback 

pathways between the MGB and PAC for perceptual formation during 

streaming. In a subsequent study based on a similar event-related paradigm, 

Kondo and Kashino (2012) confirmed the role of the MGB and PAC for 

perceptual switching during streaming as well as verbal transformations 

during a repeated word presentation task. On the contrary, Schadwinkel and 

Gutschalk (2011) found that PAC as well as the early auditory processing 

centres in the inferior colliculus (IC) are also involved during perceptual 

reversals in streaming, albeit, here segregation was achieved on the basis of 

differences in interaural time differences (ITD).  

1.5.1.3 Human neurophysiology  

Bidet-Caulet et al. (2007) performed direct recordings from human 

auditory cortex during the streaming task. Depth electrodes were inserted 

into the temporal cortex of epileptic patients who were presented with 

stimuli whose onset asynchrony was manipulated to induce either streaming 

or grouping. They recorded electrophysiological responses to acoustically 

identical stimuli that corresponded to different percepts of one or two 

streams and found that transient and steady-state evoked responses as well 

as induced gamma band oscillations are larger for onset synchrony of the 

two concurrent sounds than in the case of onset asynchrony. Transient 

evoked responses were first elicited 60ms following sound onset in the 
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posterior lateral STG and spread over PT and lateral STG until 200ms. Next, 

induced gamma oscillations were modulated in nearby regions until 300ms 

and finally, steady-state responses were evoked for several hundreds of 

milliseconds in PAC as well as the anterolateral part of the HG. These 

results offer a direct insight into the neurophysiological mechanisms in play 

during auditory perceptual organization (Bidet-Caulet and Bertrand, 2009).   

A more recent study investigated the neural correlates of auditory 

streaming by using intracranial EEG and recording from electrodes placed 

over the temporal, frontal and parietal cortex (Dykstra et al., 2011). Dykstra 

and colleagues found a number of areas spread across the superior temporal 

and peri-rolandic cortex, middle temporal gyrus as well as the inferior and 

middle frontal gyrus to be involved in auditory streaming, thus adding to the 

accumulating evidence in favor of a role for higher order non-auditory areas 

in auditory scene analysis. 

1.5.1.4 Animal electrophysiology 

Direct recording of single units and neuronal ensembles from animal 

models has provided the basis for several models of auditory stream 

segregation. Scene analysis has been studied in a number of species 

including macaques, ferrets, zebra finches, rats, bats, frogs as well as fish 

(Fishman and Steinschneider, 2010a). This section presents a brief review of 

the most significant findings from electrophysiological recordings in animal 

models. 

 



89 

 

Macaques 

 Fishman and colleagues (2001) performed seminal experiments in 

awake macaques using neuronal ensemble techniques (multiunit activity and 

current source density) to elucidate the cortical basis of the streaming 

phenomena. They investigated the nature of responses elicited by an 

alternating ABAB sequence as a function of the presentation rate. The A 

tones corresponded to the best frequency (BF) of the cortical region in A1 

while the B tones were separated from this site by a certain frequency 

separation. They observed that at slow presentation rates, A and B tone 

evoked responses were generated at the stimulus presentation rate, thus 

suggesting that a single stream was perceived at these rates. However, at fast 

presentation rates, the B tone responses were found to be differentially 

suppressed and the A tone responses occurred predominantly at half the 

presentation rate, consistent with responses to a segregated stream percept. 

Furthermore, the magnitude of the suppression of the B tones increased with 

greater frequency separation. The authors suggested that the differential 

suppression of the BF and non-BF tones may be due to forward masking 

(Calford and Semple, 1995; Brosch and Schreiner, 1997) of B tones and that 

this suppression increases with frequency separation. It was also found that 

BF tones cause greater suppression of subsequent tones than non-BF tones. 
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Figure 1.16: Model of neural stream segregation in PAC (Fishman et al., 

2001).  

Bell-shaped curves labeled `A' and `B' represent spatial activity patterns evoked by 

`A' tones and `B' tones, respectively, along the tonotopic map. The region in 

between the `A' tone and `B' tone tonotopic locations is labeled `X'. Shaded regions 

represent locations where activity patterns generated by the tones overlap. Spatial 

distributions of activity under three different ΔF conditions are depicted (small, 

intermediate, and large). Hypothetical `A' tone and `B' tone response amplitudes at 

tonotopic locations `A', `B', and `X', marked by the dashed vertical lines, are 

represented by white and black bars shown in the right half of the figure under slow 

and fast PR conditions. Bar height is proportional to response amplitude. Under the 

intermediate ΔF condition at slow PRs, the overall evoked activity is relatively 

evenly distributed across tonotopic space. At fast PRs, non-BF tones are 

differentially suppressed in locations `A' and `B', while in regions equally 

responsive to both tones (`X'), amplitudes of responses to both tones are equally 

diminished. This results in the formation of spatially discrete foci of activity along 

the tonotopic map to which attention can be subsequently directed. Figure 

reproduced from Fishman et al., 2001. 
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Based on these results, the authors proposed a model of neural 

stream segregation in A1 which is presented in figure 1.16. This model is 

based on the fact that responses of the A and B tones are localized in small 

circumscribed areas along the tonotopic map at a location determined by 

their respective frequencies. They proposed that with increasing frequency 

separation, the responses of the A and B tones become spatially segregated 

along the tonotopic map and this corresponds to the percept of two separate 

streams as observed in human psychophysical experiments. The responses 

are also modulated as a function of the presentation rate where there is 

greater suppression of the responses at faster rates due to adaptation and 

forward masking.   

Thus, the model emphasizes the role of frequency selectivity 

(responses to A and B tones are distinct and peak at corresponding tonotopic 

locations), forward masking (suppression of tones due to the preceding tone 

which is stronger for preceding BF rather than non BF tones) and adaptation 

(decrease in responses due to repeated stimulation; Fishman and 

Steinschneider, 2010a; Micheyl et al., 2007a). However, the link between 

these responses and perceptual state is indirect as no behavioural 

measurements were carried out. Another limitation of the model is that it is 

based only on A1 and does not inform if the same holds true for non-

primary auditory cortical areas. Furthermore, the model falls short of 

explaining streaming of complex sounds with overlapping spectra. Izumi 

(2002) also showed that Japanese monkeys can discriminate between tone 

sequences based on frequency separation. Further experiments revealed that 
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increasing tone duration enhances the differential suppression of non-BF B 

tones (Fishman et al., 2004) in a way that resembles the findings from 

behavioural experiments (Beauvois, 1998; Bregman et al., 2000).  

 Another seminal study was carried out by Micheyl and colleagues 

(2005) who recorded single unit responses in the primary auditory cortex of 

awake rhesus monkeys in response to the streaming sequence. Using spike-

count measures, they showed that the spiking data correspond well with 

human behavioural findings and mirrors the buildup of segregation with 

time as well as the effects of frequency separation and presentation rate. The 

major aspect of this work is the proposal of a model based on statistical 

variability of the neural responses to predict the probability of perceptual 

judgments. The central idea of the model is that evoked responses in PAC 

are “read out” by other neurons that act as binary classifiers and assume one 

of two possible states that correspond to the percept of one or two streams 

depending on the inputs received from the neurons in PAC. This 

classification is predicted to be based on measures of spike counts evoked 

by the A and B tones in a streaming triplet. If the number of spikes evoked 

by both tones exceeds a fixed threshold, a single stream response is 

generated and if the number of spikes evoked by only one of the tones 

exceeds the threshold, a two stream response is produced. The value of the 

threshold was determined on the basis of maximizing the fit between the 

data and the model predictions and did not depend on the frequency 

separation. The model predictions vs. the psychophysical findings are 

shown in figure 1.17. 
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Figure 1.17: Comparison between psychometric and neurometric functions.   

The psychometric functions are plotted here as dashed lines, to facilitate 

comparison with the neurometric functions, which are shown as solid lines. The 

error bars indicate 95% confidence intervals around the mean proportions 

estimated using statistical bootstrap. Figure reproduced from Micheyl et al., 2005. 

 

 

 

 

 



95 

 

Songbirds 

The European starling, a species of songbird has also been shown to 

exhibit auditory stream segregation for synthetic pure tone sequences as 

well as discriminate between excerpts of its own song and songs from other 

avian species (MacDougall-Shackleton et al., 1998). More convincing 

evidence was presented by Bee and Klump (2004, 2005) who performed 

careful experiments similar to the studies in monkeys (Fishman et al., 2001; 

2004) and evaluated neuronal responses in awake songbirds in response to 

the streaming sequence as a function of frequency separation and tone 

presentation time. Their data replicated the findings of Fishman and 

colleagues (2001, 2004) and consolidated the role of frequency selectivity 

and forward masking in sequential stream segregation. 

Other species  

 Auditory scene analysis has been investigated in other species as 

well, including goldfish (Fay, 1998), bats (Kanwal et al., 2003), ferrets 

(Elhilali et al., 2009a), guinea pigs (Pressnitzer et al., 2008), tree frogs 

(Velez and Bee, 2011) amongst others. These studies generally reported 

findings that are congruent with the previously discussed literature. 

However, Pressnitzer et al. (2008) showed that single unit responses in the 

cochlear nucleus of the guinea pig exhibit frequency selectivity and forward 

suppression thus demonstrating that these features of streaming may already 

be active at the level of the peripheral auditory system (Hartmann and 

Johnson, 1991; Beauvois and Meddis, 1991, 1996; Denham and McCabe, 
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1997). Another significant finding was demonstrated by Elhilali and 

colleagues (2009a) who manipulated the streaming sequence and presented 

the two tones A and B synchronously while varying the frequency 

difference between the two. Psychophysical results from humans indicated 

that the resultant percept is generally of a single stream irrespective of the 

magnitude of frequency separation. This result is in contrast with the 

standard results that suggest that large frequency separations promote a 

segregated percept. On the basis of this finding, Elhilali et al. (2009a) 

presented this synchronous sequence to ferrets while recording from their 

primary auditory cortex and found that the neural responses also follow a 

similar pattern. These results led to the proposal of a model of scene 

analysis based on “temporal coherence” which is discussed in greater detail 

in chapter 4.  

1.5.1.5 Computational Models 

Early theoretical models of auditory stream segregation focused on 

peripheral processing (Hartmann and Johnson, 1991) to explain the findings 

from behavioural experiments. Beauvois and Meddis (1991) developed a 

computer model of streaming that was based on a few principles: (i) a 

peripheral spectral analysis feeding channels that are characterized by a 

bandpass frequency response; (ii) inherent “noise” in the system; (iii) a 

“leaky integration” principle that allows excitatory activity to slowly build 

up in the channels and decay slowly with time; and (iv) an attentional 

mechanism that selectively responds to the channel with the maximum 

activity.  
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In the model, each channel is modeled by two separate pathways. 

The excitation-level path computes the overall, smoothed excitation level in 

the channel whilst the filtered-signal path carries the unsmoothed filtered 

signal for later calculation at the output. These two pathways reflect the 

segregation of the auditory pathway at the level of the anteroventral and 

posteroventral cochlear nucleus respectively. They conducted a number of 

behavioural experiments and compared these results to the predictions of the 

model.  
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Figure 1.18: Comparison of the output of the Beauvois and Meddis (1991) 

model with the results of Anstis and Saida (1985).  

 

The percentage of coherent responses in a streaming paradigm is indicated as a 

function of time. These results show the concordance between the simulations 

based on the model of Beauvois and Meddis (1991) with the experimental results 

obtained by Anstis and Saids (1985). Figure reproduced from Beauvois and 

Meddis (1991). 
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Figure 1.18 shows the predictions of the model for a particular 

simulation where the buildup of streaming was examined vis-à-vis the 

results of Anstis and Saida (1985). The input comprised of 30 seconds long 

alternating ABAB sequences where the two frequencies were 800 Hz (A) 

and 1200 Hz (B) and the tone repetition time was either 62.5 or 125ms.  The 

model was able to replicate the buildup of streaming as reported by Anstis 

and Saida (1985). Beauvois and Meddis (1996) refined their model to 

include adaptation of the auditory nerve responses and demonstrated that the 

model can capture buildup of streaming as well as the temporal coherence 

and fission boundaries. 

 

 McCabe and Denham (1997) developed a model of streaming with 

an aim to simulate the functional properties of auditory processing during 

stream formation. It represents an advance over the model of Beauvois and 

Meddis (1991, 1996) in that inhibitory feedback is incorporated here to 

achieve a graded inhibition rather than arbitrarily suppressing the output of 

non-dominant channels by half. Furthermore, a background stream is also 

incorporated to capture the output for both the dominant channel and 

residual activity as shown in figure 1.20. The model consists of two sets of 

interacting neurons that comprise the foreground (F) and the background (B) 

with symmetrical connectivity structure. The foreground array however 

receives inhibitory input reflecting the background activity that suppresses 

responses in F where B is currently active, and the inverse of the foreground 

activity which suppresses responses in the channels where F was previously 

least active. Similarly, B receives inputs from F and the inverse of B and 
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competitive interactions between these channels results in graded inhibition.  

The behaviour of the model was shown to be consistent with a number of 

established psychophysical findings such as the effect of frequency 

separation, presentation rate and buildup of streaming. The physiological 

basis of the proposed circuitry is unclear but appears to be consistent with 

temporal processing of signals in the cortical rather than peripheral areas 

contrary to the models proposed by Beauvois and Meddis (1991, 1996). 
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Figure 1.19: Model of auditory streaming by McCabe and Denham, 1997.  

Model diagram showing the connectivity patterns between the foreground and 

background streaming arrays in a physiological model of streaming developed by 

McCabe and Denham (1997). Figure reproduced from McCabe and Denham, 

1997. 
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Peripheral models of auditory stream segregation, however, are not 

able to explain aspects of streaming such as bistability. Results of studies 

based on animal and human neurophysiology further indicate that the 

primary auditory cortex is a key substrate for streaming. Denham and 

Winkler (2006) proposed a new model of streaming based on generative 

models (Friston, 2005). In such a framework, information processing is 

considered to operate at different levels in the cortical hierarchy with higher 

level areas passing predictions or expectations to lower level sensory areas 

involved in generating prediction errors based on the top-down predictions 

and the actual sensory input. Denham and Winkler (2006) suggested that the 

auditory system generates predictive models of the acoustic environment 

that compete which each other and form the bases of auditory perception. 

The model was based on four key processes: i) initial segregation based on 

primitive bottom-up cues as discussed in section 1.2.1; ii) predictive 

modeling that includes creation of alternate models of the acoustic input at 

different hierarchical processing levels; iii) competition between different 

(mutually exclusive, e.g. in case of bistable streaming signals) models of the 

input with a role for attention in the selection or biasing of such perceptual 

rivalry; and iv) neural adaptation that serves to reduce the inhibition of 

alternative models, eventually leading to the emergence of alternative 

perceptual states.  

The role of predictive coding models in explaining various aspects of 

sensory analysis has since received wider attention (Friston and Keibel, 

2009; Friston, 2010; Winkler et al., 2009, 2012; Bastos et al., 2012) and has 
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been successfully employed to explain the generation of the MMN response 

(Garrido et al., 2009) and pitch perception (Kumar et al., 2011), for instance. 

Recently, Mill and colleagues (2013) refined the predictive coding model of 

Denham and Winkler (2006) and provided a computational account of 

auditory perceptual organization that is based on competition between 

predictable representations of the sensory world. This predictive model 

(Mill et al., 2013) successfully replicated a number of phenomena related to 

streaming such as the emergence of, and switching between, one or two 

stream percepts; the influence of stimulus manipulations on perceptual 

dominance (Kondo and Kashino, 2009), rate of switching and phase 

durations of perceptual states; as well as the buildup of auditory streaming.  

Finally, there are a number of other computational models of 

auditory scene analysis as well that are based on other principles such as 

neural networks (ARTSTREAM; Grossberg et al., 2004); synchrony 

between neural oscillations (Wang and Chang, 2008) and temporal 

coherence (Elhilali et al., 2009a; Shamma et al., 2011). The temporal 

coherence model is presented in greater detail in chapter 4. 

1.5.2 Mismatch negativity 

The mismatch negativity (MMN) is a differential ERP that is elicited 

when an oddball (deviant) stimulus is presented in a train of frequently 

repeating standard stimuli. It can be elicited by introducing a violation in a 

variety of acoustic features such as pitch, intensity, presentation rate, spatial 

location as well as by deviance from complex spectrotemporal rules as well 

as in other patterns of complex sequences such as speech (see Pulvermuller 
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and Shtyrov, 2006) and music (e.g. Tervaniemi et al., 2001). It has been 

widely used in basic and clinical (e.g. Leff et al., 2009; Schofield et al., 

2009; Teki et al., 2013) research and has successfully revealed several facets 

of auditory processing, attention and memory.  

The interpretation of MMN is still under debate but is generally 

considered to reflect an automatic, pre-attentive response that helps in 

detection of novel sound sources and segregation of the acoustic scene, even 

for task-irrelevant streams (Winkler et al., 2003c; Sussman, 2005; Sussman 

et al., 2005). One interpretation suggests that the MMN represents a sensory 

memory-mismatch trace (Näätänen et al., 1978; Näätänen, 1992). Although 

this view is still accepted, an emerging view links MMN with predictive 

coding (Friston, 2005): it reflects a process that updates the representations 

of detected regularities whose prediction is violated by the acoustic input 

(Winkler, 2007). Predictive coding models of MMN explain the generation 

of the MMN response as a generative process based on interactions between 

the different levels of a hierarchical network based in primary (generates 

bottom-up prediction errors) and secondary (generates top-down 

predictions) auditory cortices respectively (Garrido et al., 2009) 

 The MMN is believed to be a pre-attentive process as it can be 

evoked even in sleep, anesthesia or even minimal states of consciousness 

(e.g. Boly et al., 2011), and under certain conditions it can also be 

modulated by attention (Alain and Woods, 1997; Arnott and Alain, 2002; 

Sussman et al., 2003). In active paradigms, the MMN can also occur in 

conjunction with later ERP components linked with focused attention like 
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the N2b (~200-300ms after stimulus onset) and the P3b (~300-350ms after 

stimulus onset) which may be generated by sources in the anterior cingulate 

and prefrontal cortices (Crottaz-Herbette and Menon, 2006). The late ERP 

components can be used to index whether listeners actually attended to the 

sounds or not.  

 The neural architecture of the MMN response includes the primary 

auditory cortex, cortical areas in the PT and neighboring posterior STG and 

ventrolateral prefrontal cortex (Opitz et al., 2002; Schonweisner et al., 

2007). These areas are argued to comprise a hierarchical network where 

PAC is involved in detection of acoustic changes, the secondary auditory 

areas mediate higher-order feature analysis, and the prefrontal cortex 

mediates attentional gating for salient changes (Schönweisner et al., 2007). 

More recently, this hypothesis has been incorporated in interacting 

predictive coding models of brain function where lower-level sensory areas 

are hypothesized to encode prediction errors whilst higher-level areas 

convey prediction signals to the lower-level areas (Friston, 2005; Garrido et 

al., 2009).  

 Investigations of the MMN response have also been performed in 

animal models and emphasize stimulus-specific adaptation (SSA) in PAC as 

a possible neuronal mechanism underlying acoustic change detection 

(Ulanovsky et al., 2003, 2004). SSA has been observed at the level of the 

cortex (Taaseh et al., 2011), thalamus (Anderson et al., 2009; Antunes et al., 

2010) and the inferior colliculus but not in the cochlear nucleus (Ayala et 

al., 2012). 
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1.5.3 Informational masking 

Informational masking refers to a type of masking that is distinct from 

energetic masking (EM). It is often referred to as non-energetic masking, 

where energetic masking is defined as masking that results from competition 

between target and masker at the level of the auditory periphery, i.e., 

overlapping excitation patterns in the cochlea or auditory nerve. On the 

other hand, IM represents a form of “perceptual” masking that is associated 

with an increase in detection thresholds due to stimulus uncertainty and 

target-masker similarity (Pollack, 1975; Leek et al., 1991; Durlach et al., 

2003). Thus, EM is often associated with peripheral and IM with central 

masking.  

Several paradigms have successfully exploited IM to study auditory 

perceptual behaviour. For instance, a common task requires the listener to 

detect a tonal target in the presence of simultaneous multi-tone maskers. The 

target is commonly a fixed-frequency tone and the masker is a complex of 

many tones selected randomly on each presentation that are constrained to 

lie outside a “spectral protection” region around the target (e.g. Kidd et al., 

1994, Gutschalk et al., 2008; Elhilali et al., 2009a). The protection region is 

employed to minimize the effects of EM. The listeners are generally 

distracted by the masker and find it difficult to detect the target even though 

there is little masker energy around the target. Their performance can be 

improved, however, by a variety of procedures such as careful instructions, 

target cueing, practice, or by reducing the similarity between the target and 

the masker (e.g. Neff and Green, 1987; Kidd et al., 1994). More precisely, 
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the similarity between the target and the combination of target and masker 

needs to be manipulated so that it becomes easy to hear out the target as 

perceptually distinct from the masker (Durlach et al., 2003). This dimension 

of similarity-dissimilarity is closely related to the distinction between 

grouping and segregation in auditory scene analysis.  

A number of psychophysical experiments have been carried out based 

on the IM stimulus and the results demonstrate that the detection of the 

target depends on the width of the spectral protection region and the density 

of the maskers (Kidd et al., 1994, 1995, 2003, 2011; Micheyl et al., 2007b; 

Gutschalk et al., 2008; Elhilali et al., 2009b). The bases of target detection 

in IM stimuli is predicted to rely on the same adaptation-based mechanisms 

as proposed for streaming sequences (Micheyl et al., 2007b). Some of the 

IM experiments carried out in humans and animals are discussed in detail 

below. 

Gutschalk and colleagues (2008) devised a task where listeners were 

required to detect a stream of regularly repeating tones amidst a background 

of masking tones that were randomly organized in frequency and time. This 

stimulus is similar to those used by Neff and Green (1987) and Kidd et al. 

(2003). They measured brain activity using MEG and analyzed evoked 

fields in response to the perceptually detected and undetected target tones in 

the auditory cortex. They uncovered a response in PAC that was only 

present for the detected targets at a latency of 50-250ms as shown in figure 

1.20. This response was termed as ‘awareness related negativity’ (ARN) that 

reflects conscious sound perception in the auditory cortex. 
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Figure 1.20: MEG source waveforms in response to the targets and maskers 

in an IM paradigm.  

MEG source waveforms are shown here that are averaged over the different SOA 

conditions, hemispheres and listeners. There is essentially no response to maskers 

or undetected targets as shown on the left. There is a significant negativity in 

response to detected targets that is termed as the awareness related negativity. 

Figure reproduced from Gutschalk et al., 2008. 
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However, the source analysis based on dipole fitting cannot 

conclusively rule out the involvement of secondary auditory areas. In a 

subsequent experiment, Wiegand and Gutschalk (2012) used fMRI along 

with MEG to probe the neural substrates of the ARN in a similar paradigm. 

They found significantly stronger BOLD activity for detected vs. undetected 

targets in the core auditory cortex, with prominent activations in the medial 

part of the Heschl’s gyrus.  

 In another IM experiment using MEG, Elhilali and colleagues 

(2009b) used a variant of the IM stimulus to examine the influence of 

listener’s attentional state on the neural responses. Listeners had to perform 

two tasks: one based on the target tones where they were required to detect a 

frequency deviant in the repeating target sequence; and another 

complementary task based on the masker tones where they needed to detect 

an increase in the length of the maskers. Thus, with the same physical 

stimulation, the authors manipulated the attentional state of the listeners 

which was focused on different components in the acoustic scene. The MEG 

data revealed that attention strongly modulates the steady-state neural 

representation of the target stream and boosted the perception of the 

foreground signal. This effect was found to be mediated by the auditory 

cortex exclusively at the rate of presentation of the target stream (4 Hz) with 

a resolution of a fraction of a Hertz. The attentional enhancement was 

accompanied by an increase in coherence over distant channels reflecting an 

increase in neural synchronization.  
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 Although this paradigm has several advantages over the streaming 

signal and revealed correlates of auditory perceptual awareness, it has a few 

limitations. The spectral protection region offers a cue to the listeners who 

can potentially solve the task by attending only to the energy in the limited 

frequency band surrounding the target. Although the stimuli are spectrally 

rich and span a broad frequency range, they are unlike natural sounds which 

consist of overlapping frequencies without any protection region around the 

signal of interest. 

1.5.4 Speech 

Speech and conspecific vocalizations represent natural 

communication signals with rich spectrotemporal content. Speech is an ideal 

stimulus to use in human studies on the cocktail party problem (Cherry, 

1953; Billig et al., 2013). However, it is also contaminated with strong 

semantic content that may specifically invoke top-down processes and is not 

amenable to careful control of its spectrotemporal properties unlike the 

previously discussed signals. Sequences of tones as used in streaming, 

MMN and IM experiments are useful in probing low-level aspects of 

primitive stream segregation with parameterized control over stimulus 

features whilst speech offers an ecologically valid route to access attentional 

mechanisms involved in streaming. A number of psychophysical, imaging 

as well as electrophysiological experiments using speech and vocalizations 

in animal models have been conducted. It is beyond the scope of the present 

thesis to cover all bases and only a few studies that highlight brain bases of 

speech segregation are discussed below. 
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 A major theory holds that speech perception relies on entrainment of 

cortical activity to multiple time scales in the speech signal that enable 

parsing of the input into different units of speech representation 

characterized by different frequencies, such as phonemes and syllables 

(Giraud et al., 2007; Lakatos et al., 2008; Giraud and Poeppel, 2012). This 

results in nesting of neural activity across multiple frequency bands that 

represents a general neural code for sensory perception. In the framework of 

a cocktail party scenario, selective entrainment to the attended speaker is 

important to track his or her speech over time. Several studies have explored 

the question of attentional control in the context of a multi-talker 

environment using techniques with high temporal resolution such as EEG, 

MEG and intracranial EEG to track the precise temporal dynamics of speech 

(Lee et al., 2013).  

 Luo and Poeppel (2007) measured MEG responses while listeners 

were listening to spoken sentences and analyzed the phase tracking 

dynamics. They found that the phase pattern of theta band (4-8 Hz) 

responses in auditory cortex reliably discriminates spoken sentences. This 

theta bandwidth is strongly represented in the speech envelope and is critical 

for accurate speech comprehension. Furthermore, the tracking ability was 

found to be correlated with speech intelligibility, i.e. theta phase tracking 

became less robust with decreased speech intelligibility. They suggested that 

a temporal window corresponding to the theta range (~200ms) segments the 

input speech signal and may be involved in processing syllables (mean 

duration of ~ 200ms). In a similar vein, Kerlin and colleagues (2010) also 
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found that selective attention enhances the discrimination of attended speech 

in auditory cortex in a frequency range from 4-8 Hz. Additionally, they 

demonstrated that a difference in alpha power (8-12 Hz) at parietal sites 

across hemispheres could predict the direction of auditory attention to 

speech. This is consistent with a role of the posterior parietal cortex in 

auditory spatial attention (Fritz et al., 2007).  

Ding and Simon (2012) asked listeners in an MEG experiment to 

attend to one of two speakers while they manipulated the relative intensity 

between the attended and the background speakers. They analyzed phase-

locked neural activity for any evidence of selective synchronization to the 

speech of the attended talker. Using a linear decoder, they found that the 

decoded envelope significantly correlated with the envelope of the attended 

speech. This correlation was insensitive to the intensity of the target speech 

as well as the relative intensity between the target and the masker. They 

further constructed a spectrotemporal receptive field (STRF) for each MEG 

sensor and examined the auditory evoked responses, M50 and M100. The 

M100 was localized in the secondary auditory cortex and was found to be 

stronger for the attended vs. the background speech unlike for the M50 

response. Furthermore, both the evoked responses were insensitive to the 

intensity of the attended or the background streams suggesting that a robust 

object-based representation of the attended speaker was formed.  

 Mesgarani and Chang (2012) performed a similar experiment using 

multi-electrode surface recordings from the human auditory cortex. They 

showed that it is possible to reconstruct both the attended and the ignored 
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speech signal from the time course of high-gamma power and that the 

attended signal was more reliably reconstructed than the ignored one. The 

spectrogram obtained from the reconstruction of a single speaker was found 

to be remarkably similar to the spectrogram derived from the mixture of two 

speech signals when the same speaker was attended to. They also 

demonstrated that it is possible to decode both the attended words and 

speaker identity as well.  

 A similar experiment based on direct cortical recordings was 

conducted by Zion-Golumbic et al. (2013a) who examined both low 

frequency and high gamma neural representations of attended speech 

signals. They found that both low frequency phase and high gamma power 

concurrently track the envelope of attended speech and suggest that tracking 

in these two bands may represent separate neuronal mechanisms for speech 

perception. Attention modulated the perceptual representation in the 

auditory cortex by enhancing the tracking of the attended speech stream, 

although the ignored speech stream remained represented. In higher-order 

cortical areas, more selective representation of the attended speaker was 

observed but without any faithful representation of the ignored speech. 

Significantly, this selectivity evolved and became stronger with time. In a 

related experiment, the same authors demonstrated that vision can enhance 

the selective auditory cortical tracking of the attended speaker (Zion-

Golumbic et al., 2013b). Visual cues represent a potent cue as they arrive 

before the corresponding acoustic signal and may serve to direct attentional 
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resources at precise moments in time when the speech signal is predicted to 

arrive. 

1.5.5 Complex non-speech stimuli 

More recently, complex acoustic signals have been used to examine 

the cocktail party problem (Nelken, 2004). These low-level stochastic 

signals are designed to simulate complex acoustic scenes that we are 

exposed to in our everyday lives. Such signals allow flexible parametric 

control over the acoustic properties of the stimulus that are based on 

stochastic variations in spectrotemporal space (see Figure 1.10; Overath et 

al., 2010) or are based on models of auditory perception that capture the 

statistics of stationary sounds in the environment (see Figure 1.11; 

McDermott and Simoncelli, 2011).  

Overath et al. (2010) addressed a fundamental question of the 

formation and representation of an auditory object that is an essential 

prerequisite for subsequent segregation. They argued that from first 

principles, analysis of objects requires two fundamental perceptual 

processes (Griffiths and Warren, 2004; Griffiths et al., 2012; Bizley and 

Cohen, 2013). The first mechanism is required to detect boundaries between 

objects and is based on identifying variations in the statistical properties of 

individual objects at the edges in spectrotemporal space (Kubovy and Van 

Valkenburg, 2001; Chait et al., 2007, 2008). The second mechanism is 

required for invariant representation and maintenance of the segregated 

object (Griffiths and Warren, 2004). Although previous studies have 

investigated cortical bases of auditory edge detection (Chait et al., 2007, 
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2008) these did not address mechanisms pertaining to perceptual 

representation of the object. Here, the authors developed a novel stimulus 

based on spectrotemporal coherence to create objects and boundaries 

between them. This “acoustic texture” stimulus is conceptually similar to 

the visual coherent dot motion paradigm (Shadlen and Newsome, 1996) and 

comprised randomly distributed linear frequency-modulated ramps with 

different trajectories. The coherence between these ramps was manipulated 

to create different auditory objects and the transitions between ramps with 

different coherence represented boundaries between these objects.  

Using a parametric fMRI design, they found that activity in the 

Heschl’s gyrus, PT, temporo-parietal junction (TPJ), and superior temporal 

sulcus (STS) increased as a function of increasing change in 

spectrotemporal coherence at texture boundaries. For the representation of 

texture coherence, on the other hand, only activation in the secondary areas 

including PT and TPJ was observed. Another interesting result was that 

boundaries between textures associated with an increase rather than a 

decrease in coherence were found to be perceptually more salient, and 

resulted in greater neuronal activity. This phenomenon has also been 

observed in more recent work suggesting that appearance of an auditory 

object is more salient than its disappearance (Constantino et al., 2012). 

A similar stochastic stimulus was developed by McDermott and 

Simoncelli (2011) that is based on capturing the statistics of real-world 

stationary sound textures such as a stream of water, the sound of fire or that 

produced by a swarm of insects (see section 1.4.4.2 for more details). In a 
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recent experiment based on such textures, McDermott et al. (2013) 

developed a ‘cocktail party’ texture that was based on the superposition of 

multiple recordings of different speakers. Four different versions of the 

textures with varying density or number of speakers (1, 7, 29, or 115) were 

created. Listeners were presented with three excerpts of textures (of which 

two were identical) and were required to indicate which excerpt was 

different from the other two (as in an AXB paradigm). Two different 

durations of the textures were used – 50ms and 2500ms. Results revealed 

that the shorter exemplars were highly discriminable for all conditions but 

varied for the longer exemplars, producing an interaction between duration 

and the density of the textures. These results are in line with other 

experiments in the same study where discrimination of different exemplars 

of the same texture declined with the duration of the textures. This is 

contrary to discrimination performance for samples of different textures 

where performance increased with duration. Overall, the results suggest that 

summary statistics for mixtures such as speech may have a role in encoding 

time invariant properties of speech like voice quality or speaker identity and 

thus may aid segregation based on these features. 
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1.6 Key problems addressed in this thesis 

Auditory scene analysis has been a topic of intense investigation over 

the last several decades and with the advent of modern imaging and 

recording techniques as well as development of sophisticated acoustic 

stimuli, there has been considerable progress. However, much of the work is 

and continues to be inspired by simple deterministic stimuli such as 

streaming and oddball stimuli, and multi-tone complexes that constrain the 

interpretation of the experimental findings. It is difficult to ascertain if the 

principles and mechanisms of streaming derived from such simple 

paradigms apply for real world sounds as well.  

More recently, there has been a trend towards the use of complex 

stimuli that are based on stochastic variation of certain acoustic features that 

define an object (Overath et al., 2010) as well as synthetic stimuli that 

capture the time-invariant statistical properties of natural sound textures 

(McDermott and Simoncelli, 2011). This doctoral thesis adds to the growing 

field of perceptual analysis of complex acoustic scenes based on realistic 

stimulus patterns. A novel stochastic stimulus to study low-level figure-

ground segregation in a controlled way is reported here. This signal, referred 

to as stochastic figure-ground (SFG) stimulus is an approach to segregation 

in real-world acoustic scenes.  

The SFG stimulus forms the central theme for all the studies reported 

here. A variety of parametric designs using complementary behavioural, 

modeling and functional imaging techniques were used to elucidate the 

brain bases and mechanisms of segregation in complex acoustic scenes. The 
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following sections provide a brief description of the motivation for the 

studies that comprise this thesis. 
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1.6.1 Chapter 3 - Study 1 

What are the behavioural capabilities of segregation in the novel SFG 

stimulus and how robust is performance to spectrotemporal manipulations? 

 Segregation can be easily performed in stimulus paradigms based on 

streaming, oddball as well as informational masking stimuli which represent 

a relatively simple simulation of segregation in real world acoustic 

environments. These signals comprise of deterministic narrowband patterns 

that either do not overlap in time (streaming and oddball signals) or have a 

spectral protective region surrounding the target tone (IM signals). This 

study introduces a novel stimulus, known as the stochastic figure-ground 

(SFG) stimulus that improves upon the limitations presented by these 

signals. The stimulus consists of a sequence of chords with randomly 

varying pure tone components that change from one chord to another. The 

target is defined by a set of repeating frequency channels that can only be 

detected by binding across both frequency and time domains. This study 

investigated target detection performance in the SFG stimulus under a 

variety of different stimulus conditions that manipulated the spectrotemporal 

structure of the stimulus. 
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1.6.2 Chapter 4 – Study 2 

What are the mechanistic principles underlying segregation in the SFG 

stimulus and does a computational model based on temporal coherence 

explain segregation in the SFG stimulus? 

 Study 1 characterized target detection behaviour in the SFG stimulus 

and performance was found to be robust to several spectrotemporal 

manipulations. Segregation in the SFG stimulus cannot be easily explained 

based on standard models of auditory stream segregation (Fishman and 

Steinschneider, 2010a). This study investigated the ability of a new model 

of auditory segregation based on temporal coherence between frequency 

channels (Shamma et al., 2011) to explain segregation in the SFG stimulus. 

Temporal coherence refers to the average cross-correlation between 

channels over a specific time window and emphasizes the role of time in 

auditory scene analysis. In this study, each of the SFG stimuli examined in 

study 1 was simulated according to the model and its predictions were 

compared relative to the behavioural results. 
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1.6.3 Chapter 5 – Study 3 

Which brain areas are involved in detecting the emergence of a target in the 

SFG stimulus? 

 Studies 1 and 2 established the behavioural and mechanistic bases of 

segregation in the SFG stimulus. This naturally leads to the next question, 

i.e., which brain areas are involved in detecting the emergence of the 

“figure” in this complex stimulus? Are the same brain areas in the auditory 

cortex involved in segregation as found in studies based on streaming or are 

other brain areas recruited in the case of the more complex SFG signal? 

Study 3 explored the brain bases of segregation in the SFG stimulus using 

functional magnetic resonance imaging.  
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1.6.4 Chapter 6 – Studies 4 and 5 

What are the temporal dynamics of segregation in the SFG stimulus? 

Moving from functional magnetic resonance imaging to 

magnetoencephalography, the aim of these studies was to elucidate the 

temporal dynamics of segregation in the basic SFG stimulus as well as a 

stimulus with white noise alternating between successive SFG chords as 

characterized in study 1. MEG tracks brain activity with a temporal 

resolution on the order of milliseconds and was used to investigate 

segregation in the SFG stimulus in a passive paradigm based on a simple 

transition from “background” to “figure”. This study investigated the profile 

of the evoked transition responses and examined the underlying sources, 

with a specific aim to understanding the role of auditory cortex in figure-

ground analysis in the SFG stimulus. 
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Chapter 2. METHODS 

This chapter outlines the experimental methods used to analyse the 

behavioural and neuroimaging data presented in this thesis. The first section 

(section 2.1) deals with psychophysical procedures and measures used to 

index behavioural performance that forms a core component of the thesis. 

The next section (section 2.2) deals with the technique of magnetic 

resonance imaging (MRI) – from the physics of the MRI signal to data 

acquisition and statistical analysis. The final section (section 2.3) presents 

another popular tool in cognitive neuroscience – Magnetoencephalography 

(MEG) that provides high temporal resolution to precisely track the 

dynamics of cortical activity during auditory perception. 

2.1 Psychophysics 

Psychophysics has a long history, going back to the late 19
th

 century, 

when Gustav Fechner first formulated it as a field of research to relate 

physical stimuli (e.g. light or sound) to the corresponding sensations they 

produce. It generally refers to the application of behavioural techniques to 

the study of sensory processing in human or animal species. In the auditory 

domain, psychoacoustics is the preferred term for analysis of auditory 

behaviour. 

Psychophysics is an important field of study with widespread 

applications – from the development of animal models of auditory 

processing to design of acoustic devices such as hearing aids or cochlear 

implants (Fastl and Zwicker, 2006; Shofner and Niemiec, 2010). There exist 
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several psychophysical procedures, some of which are briefly described in 

the following section. 

2.1.1 Psychophysical procedures 

Psychophysical procedures can be classified in different ways, but 

the most common classification depends on whether stimuli are presented at 

fixed levels or at levels that vary adaptively according to the listeners’ 

behaviour.  

2.1.1.1 Method of Constant Stimuli 

This method allows full sampling of the psychometric function 

where several stimulus levels that bracket the threshold are pre-selected and 

presented multiple times. The listener’s absolute threshold can be calculated 

from the psychometric function which is often defined as the stimulus level 

that results in 50% correct detection. One disadvantage of the method is that 

it is relatively inefficient and requires many trials to estimate a single point 

on the psychometric function. 

2.1.1.2 Alternative forced-choice procedures 

In these methods, the listener usually has the task of deciding 

whether a signal was present or not on one or more of the presented 

intervals. In a one interval-two alternative forced-choice procedure, the 

listener has to judge whether a signal was present or not by responding 

“yes” or “no”. In a two interval-two alternative forced choice procedure, two 
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different stimuli may be presented but only of these contains the signal and 

the listener has to decide which interval contained the signal. 

A variation of the above procedure, known as the AXB paradigm is 

marked by three levels (Goldinger, 1998). This task involves stimulus 

comparison rather than detection of a particular stimulus feature. Two 

identical signals are presented at different intervals (either at A or X, or, at 

X or B) and the listener is required to indicate which interval contained a 

different or “odd” signal (A or B).  

2.1.1.3 Adaptive tracking 

Here, the stimulus levels depend on the listener’s performance on the 

previous trials unlike the fixed algorithms in classic forced-choice 

procedures. Also known as “up-down” procedure, the stimulus level is 

reduced following a set number of correct detections and increased 

following a number of misses, asymptoting at a particular accuracy level on 

the psychometric function (Levitt, 1971). A one-down/one-up (two-

down/one-up) tracking rule is associated with a reduction in stimulus level 

after one (two) correct detections and an increase in stimulus level after a 

single miss, tracking the 50% (70.7%) correct detection point on the 

psychometric function.  

Reversing the direction of stimulus level continues until a set 

number of reversals are obtained; and the step size may be decreased after a 

set number of reversals to obtain a finer estimate of the threshold. The chief 

advantage of the tracking procedure is that it is more efficient than the 
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method of constant stimuli as more samples are obtained closer to the 

listener’s threshold. This is determined by the step size and the number of 

reversals used to define threshold.  

2.1.2 Signal detection theory 

Signal detection theory is a theoretical framework that allows one to 

quantify decision making under uncertainty. It is particularly useful in 

behavioural experiments looking at the detection of sensory signals in the 

presence of noise.  

A simple example is considered here for illustration purposes. 

Imagine an acoustic stimulus that contains speech in the presence of loud 

masking white noise. The speech is the signal of interest that the listener has 

to detect over and above the noise. On certain trials, the listener may 

respond “yes” when the speech signal is present (“hit”) or “no” when the 

signal was absent (“miss”). Alternatively, the listener may also respond 

“yes” when the signal was absent (“false alarm”) or “no” when the signal 

was actually absent (“correct rejection”). These constitute four possible 

responses and are considered together for quantifying discrimination 

performance and bias.  

A measure of discriminability based on these responses known as the 

d-prime (d’) can be formulated which represents a true measure of the 

internal response and does not depend on any criterion adopted by the 

listener.  
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D-prime takes both hits and false alarms into account and is defined as:  

                d’ = Z(hit rate) – Z (false alarm rate)     (Eq. 2-1) 

where, Z is defined as the inverse of the cumulative Gaussian distribution 

(MacMillan and Creelman, 2005). 

2.2 Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is based on the principles of 

nuclear magnetic resonance (NMR; Cohen, 1996; 1999; Bandettini and 

Wong, 1998) which is a technique used to measure microscopic chemical 

and physical data from individual atoms. The technique came to be known 

as MRI instead of NMR because of the negative connotations associated 

with the word ‘nuclear’ in the 1970s.  

The beginnings of NMR can be traced back to the 1940s when Felix 

Bloch and Edward Purcell independently discovered the magnetic resonance 

phenomenon, for which they received the Nobel Prize in 1952. Since then, it 

was used primarily for physical and chemical molecular analysis. In the 

1970s, Raymond Damadian demonstrated that tissues and tumors have 

different magnetic relaxation times, thus motivating the use of NMR for 

clinical purposes. He later developed field-focusing MRI technique whilst 

Peter Mansfield at the same time developed the echo planar imaging (EPI) 

technique (Damadian et al., 1977; Mansfield, 1977).  

Atomic nuclei that contain an odd number of nucleons are unstable 

entities and behave like magnetic dipoles with a magnetic moment and a 
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spin. Such nuclei are capable of producing NMR signals as they align in an 

external magnetic field and ‘precess’ at a frequency proportional to the field 

strength. The transitions between energy states (parallel and anti-parallel to 

the external magnetic field) emit energy in the radio frequency range when 

the nuclei return to equilibrium. Such NMR signals are not produced by 

nuclei with even numbers of nucleons. The human body contains 

approximately 63% hydrogen atoms which are present predominantly in the 

form of water in tissue. 

In order to obtain high resolution MR images, there are a few essential 

requirements. Firstly, a powerful external magnetic field is required that 

aligns hydrogen atoms parallel to the field. Magnetic field is measured in 

Tesla (T), where 1 Tesla = 10000 Gauss. This represents extremely high 

field strength in comparison to the Earth’s magnetic field of 0.5 Gauss. 

Modern MR scanners used in human neuroscientific research produce fields 

that vary from 3 T to 11 T and the imaging experiment reported in this 

thesis was carried out in a 3T Siemens Allegra scanner. Another 

requirement is a high energy (radio frequency, RF) pulse of a specific 

frequency and duration to perturb the equilibrium state of the nuclei and 

induce net magnetization that results in the emission of energy as discussed 

below.  

From producing NMR images of single slices through the human 

body, MRI was further developed to incorporate spatial information of the 

tissue by spatially varying the magnetic field. Modern MRI techniques 

produce high resolution images based on spatial variations in the phase and 
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frequency of the radio frequency energy being absorbed and emitted by 

protons in human tissue.  

In a magnetic field of strength B, a proton that has a net spin can 

absorb a photon of frequency  and are related by the following equation:    

 = B     (Eq. 2-2) 

where,  is the Larmor frequency in MHz,  is the gyromagnetic ratio in 

MHz/Tesla and B is the strength of the external magnetic field in Tesla. For 

hydrogen atoms, the Larmor frequency is 42.58 MHz/Tesla.  

The spin can be considered as a magnetic moment vector causing the 

proton to behave as a tiny magnet which can align with the external field in 

either a low energy state (where poles are aligned N-S-N-S) or a high 

energy state (where poles are aligned N-N-S-S). The proton can transition 

between these two energy configurations by absorbing a photon whose 

energy is equal to the difference in energy between the two states. This 

relationship is given by the following equation:  

E = h                    (Eq. 2-3) 

where, E is the energy of the photon and h is the Planck’s constant (h = 6.63 

x 10
-34

 Joules/second). 

Thus, there are two possible magnetization alignments in a three 

dimensional reference – a longitudinal magnetization (Mz), where the 

magnetic moment (along z-axis) is in alignment with the external magnetic 
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field, B, and a transverse magnetization (Mxy) in the x-y plane due to the 

precession of the nuclei along the z-axis. At equilibrium, the net 

magnetization is equal to the longitudinal magnetization and there is no 

transverse magnetization.  

The magnetization at equilibrium (M0) can be perturbed by the 

application of a radio frequency pulse whose energy is equal to the energy 

difference between the two spin states. In the situation where the spin 

system is saturated, longitudinal magnetization can be reduced to zero. The 

time taken for the longitudinal magnetization to return to its equilibrium 

value is known as the spin lattice relaxation time, often denoted as T1. This 

is given by the equation: 

Mz = M0 (1 –e
 –t/T1

)     (Eq. 2-4) 

Another effect of the RF pulse with Larmor frequency is the 

precession of the nuclei in phase, causing a net transverse magnetization in 

the x-y plane. However, this net magnetization begins to dephase because 

the constituent spin packets experience different magnetic fields and rotate 

at different Larmor frequencies. The time constant which defines the return 

to equilibrium of the transverse magnetization is known as the spin-spin 

relaxation time, T2 and is given by the equation: 

Mxy = Mxy0 e
 –t/T2

       (Eq. 2-5) 

However, the effective time for the transverse magnetization to reduce 

to its equilibrium value is governed by molecular interactions (which leads 
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to a pure T2 molecular effect) and variations in the external field, B (which 

leads to an inhomogeneous T2 effect) and the effective time constant is 

known as T2* which is given by the equation:  

1/T2* = 1/T2 + 1/T2inhomo    (Eq. 2-6) 

The generation of NMR images makes use of several tissue 

properties: the NMR signal varies as a function of the proton density. 

Additionally, tissues have different magnetization characteristics that 

determine how rapidly the NMR signal decays. The signal decay is a 

function of both T1 and T2*.  

 

The most common NMR imaging technique is the ‘spin-echo’ 

technique (Hahn, 1950). An initial RF pulse is applied to the tissue at 

equilibrium which results in tissue-specific T1 and T2 effects as discussed 

above. A second ‘echo’ RF pulse is used to cancel the spin phase differences 

of the nuclei rotated by the initial RF pulse, thereby reforming the transverse 

magnetization decay and neutralizing the effects of T2* dephasing due to 

extrinsic inhomogeneities in the external magnetic field. This results in 

better detection of the small inhomogeneities that actually reflect tissue 

magnetization differences. The time at which the decay signal is read out 

with an RF receiver coil is known as the ‘time-to-echo’ (TE). The 

spatiotemporal resolution of the MR images is limited by the biological 

properties of the tissue as well as the characteristics of the scanner and the 

imaging sequence (field strength and TE). An alternative technique in NMR 

is a gradient-echo technique that records the signal after the initial 90° RF 
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pulse without phase refocusing and is thus more susceptible to T2* effects; 

for this reason, it is commonly used in fMRI. 

NMR images are obtained by periodically varying the field strength 

in a gradient along each dimension, so that resonant frequency is a function 

of spatial position. The NMR signal obtained at the RF receiver coil at time 

TE is a complex of different frequencies that is analysed using Fourier 

decomposition. Thus, spatial frequency encoding is determined by the 

amplitude and duration of the gradients. To obtain a complete three-

dimensional image, all combinations of spatial coordinates are sampled 

along each axis. A planar image is constructed on a grid in the Fourier 

spatial frequency domain or ‘k-space’ using two orthogonal gradients: a 

‘read-out’ gradient along the x-axis (Gx) that encodes the spatial frequency 

and a ‘phase-encode’ gradient along the y-axis (Gy) that advances the phase 

using a series of appropriate RF pulses. In this k-space, high spatial 

frequencies are represented in the periphery whilst low spatial frequencies 

are encoded in the centre. The path traversed through the k-space to acquire 

the data is known as the k-space trajectory. The time between successive 

phase-encoding pulses is referred to as the ‘time-to-repeat’ (TR). An 

orthogonal ‘slice-selection’ gradient in the z-axis (Gz) enables the sampling 

of successive tissue planes. This gradient is crucial for ensuring that only the 

protons in a single slice (of thickness determined by the bandwidth of the 

RF pulse) become resonant and thus undergo rotation and emit a signal. In 

the end, an inverse Fourier transform is applied to the signal in each plane to 

recover the spatial characteristics of the imaged tissue.  
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The strength of MRI for cognitive neuroscience applications is its 

high spatial resolution that enables the accurate localization of neural 

activity. The resolution is characterized by the size of a single image volume 

element (voxel) that is determined by the ratio of the volume of the image 

(field of view) and the number of sampling points during image acquisition. 

Voxel size is characterized by the product of the number of samples in the 

read-out and phase-encoded directions and the slice thickness. In the fMRI 

experiment conducted as part of this thesis, the in-plane resolution was 3.0 x 

3.0 mm
2 

and the slice thickness was 2 mm with 1 mm gap between slices 

(see section 5.2.4 for more details). 

2.2.1 Functional magnetic resonance imaging 

Functional magnetic resonance imaging (fMRI) has heralded a 

revolution in systems and cognitive neuroscience by providing experimental 

access to neuronal ensembles involved in perception and cognition.  

Previous imaging techniques such as Positron Emission Tomography (PET) 

involved ingestion of radioactive tracers, whilst fMRI offers the benefits of 

non-invasive imaging of the whole brain with high spatial resolution. It also 

has the advantage of flexible data acquisition characteristics that can be 

adapted for the specific problem being addressed.  

In this section, the principles of fMRI, its neurophysiological bases, 

scanning protocols for acquisition of auditory datasets, data pre-processing 

and statistical analysis steps carried out to obtain functional correlates of 

task-related brain activity are briefly reviewed.  
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2.2.1.1 Echo-planar imaging 

To investigate physiological phenomena using fMRI, rapid image 

acquisition is required. This is achieved through echo-planar imaging 

(Mansfield, 1977) that enables ultrafast acquisition of the x-y plane using a 

single excitation pulse (‘single shot’) on the order of tens of milliseconds 

per volume. Rapid switching of frequency (Gx) and phase (Gy) gradients is 

performed to cover the entire plane.  

In functional applications of EPI, gradient-echo rather than spin-

echo acquisition sequences are used to refocus the NMR signal. As the spin-

echo is omitted, the signal is more sensitive to local field inhomogeneities 

(T2*) including those produced by deoxyhaemoglobin and thus better suited 

for detection of metabolic dynamics. Gradient echoes are usually generated 

by an oscillating gradient (Logothetis, 2002) along the read-out direction 

that follows a zigzag trajectory in k-space. Here, TE is defined as the time 

from the excitation pulse to the centre of k-space that is approximately equal 

to T2* (Logothetis, 2002). EPI requires large gradient amplitudes and rapid 

gradient switching for rapid acquisition which necessitates the use of 

dedicated hardware for phase encoding, and high-speed analog-to-digital 

conversion.  

2.2.1.2 Physiological basis of BOLD signal  

The technique of fMRI based on measurement of the BOLD signal is 

aptly summarized by Ogawa (2012) in an article from a special volume of 

NeuroImage celebrating twenty years of fMRI as below:  
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 “To perform a given or spontaneous task, the brain mobilizes 

localized specific sites which form a functional network specialized for the 

task. Synaptic activity in such localized sites is tightly coupled through 

astrocytes to vascular responses that can be detected by fMRI. The response 

time, on the order of seconds, is much slower than neural events, but one 

can plot the time course of the MRI signal and infer the task-related neural 

events in the brain that caused the response. This non-invasive way of 

measuring phenomena related to brain function has indeed widened the 

scope of brain research.” 

 

Seiji Ogawa, termed the image contrast “BOLD” (Blood 

Oxygenation Level Dependent) as it was dependent on the content of 

deoxyhaemoglobin in the blood (Ogawa et al., 1990a; Ogawa, 2012). He 

demonstrated in vivo that changes in blood oxygenation affected T2 and 

T2* weighted signals (Ogawa et al., 1990a, 1990b). However, the 

application of the BOLD signal in its present form can be traced back to 

early work by Linus Pauling who showed that the magnetic susceptibility of 

haemoglobin depends on the specific isotopes that are bound differently to 

oxygen-bound iron – oxyhaemoglobin is diamagnetic while 

deoxyhaemoglobin is paramagnetic (Pauling and Coryell, 1936). The NMR 

signal of paramagnetic deoxyhaemoglobin decays faster than oxygenated 

haemoglobin. This results in magnetic susceptibility differences between the 

haemoglobin-containing vasculature and the surrounding tissue. This leads 

to greater dephasing of the protons and a reduction in the corresponding T2* 
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signal. Neural activity is thus related to changes in T2* (BOLD) signal and 

the corresponding regional intensity changes in T2*-weighted images 

(Ogawa et al., 1992).  

The characterization of BOLD signal and neuronal dynamics was 

carried out in a series of experiments by Nikos Logothetis and colleagues 

who combined acquisition of BOLD signal in anaesthetized monkeys with 

intracortical microelectrode recordings from the visual cortex (Logothetis et 

al., 2001; Logothetis, 2002, 2003). It was established that the BOLD 

haemodynamic response correlates most strongly with low-frequency 

components of the extracellular local field potentials (LFPs) rather than 

spiking activity of local neuronal ensembles (Logothetis, 2012). 

Extracellular field potentials primarily reflect local neuronal processing 

within a cortical ensemble rather than the output activity per se. LFPs 

represent several effects such as neuromodulation, interactions between 

interneurons and pyramidal cells which may be the underlying bases for the 

resulting haemodynamic signal (Logothetis, 2012). Currently, it is accepted 

that haemodynamic responses depend on the size of the activated 

populations and reflect enhanced regional neural activity (Logothetis, 2012).  

2.2.1.3 Haemodynamic response function 

The haemodynamic response function (HRF) characterizes the 

BOLD response and has distinct characteristic phases (Logothetis, 2002). It 

captures the varied and complex interactions between regional cerebral 

blood flow, blood volume and blood oxygenation. There is an initial ‘dip’ 

that may reflect increase in oxygen consumption which changes the ratio of 
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deoxyhaemoglobin to oxyhaemoglobin (Malonek and Grinvald, 1996). This 

is followed by an increase in regional blood flow to the active regions. 

Using PET, Fox and Raichle (1986) demonstrated that this represents a 

decrease in oxygen extraction fraction, i.e., an increase in blood 

oxygenation. This increased signal corresponds to the peak of the HRF 

which approximately takes 4-6 seconds from stimulation onset to reach the 

maxima and returns to baseline approximately 5-20 seconds after stimulus 

offset in primary sensory (including auditory) cortices (Belin et al., 1999; 

Hall et al., 1999). Increased blood flow results in vasodilation and an 

increase in local venous blood volume which causes a post-stimulus 

undershoot in the HRF (Buxton et al., 1998). These haemodynamic changes 

depend on the external field strength but the peak BOLD response is 

typically on the order of 1-1.5% in the auditory cortex (Talavage et al., 

1999). 

2.2.2 fMRI for auditory stimulation 

2.2.2.1 Problems in auditory functional neuroimaging 

Although fMRI has proved to be very important in revealing aspects 

of human auditory perception, it is not completely free of methodological 

issues. The main constraint of human fMRI for auditory research is the loud 

acoustic noise produced by the switching of the gradient coils. Continuous 

EPI sequences can result in sound pressure levels of 120 dB in the bore of 

the scanner (Ravicz et al., 2000; Price et al., 2001). The primary source of 

noise is due to the read-out gradients, with other low frequency ambient 
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noise produced by the helium cooling pump and air conditioning systems 

(Ravicz et al., 2000).  

Furthermore, the spectrum of the gradient noise is broadband and 

ranges from 250 Hz to 4 kHz with a peak around 1-1.5 kHz (Hall et al., 

1999; Ravicz et al., 2000; Chambers et al., 2001). This is a major problem 

as it overlaps with a critical frequency range for human auditory perception. 

At low frequencies (below 500 Hz), the ear canal is a major route of 

conduction of environmental noise, whilst at higher frequencies (greater 

than 500 Hz), direct conduction through the bones becomes the major route 

when ear protection is provided (Ravicz and Melcher, 2001). Ear defenders 

can provide 30-40 dB of passive attenuation of scanner noise but active 

noise cancellation systems can provide additional benefits (Chambers et al., 

2001; Moelker and Pattynama, 2003), however, its benefits are limited by 

the bone conduction of noise. Scanner noise causes a BOLD response of a 

variable magnitude (Moelker and Pattynama, 2003) in the primary auditory 

cortex and to a lesser extent in non-primary auditory cortex whose 

magnitude increases nonlinearly with the duration of the acquisition 

sequence (Talavage et al., 1999).  

The scanner noise poses several problems: most significantly it 

reduces the signal to noise ratio (SNR) as the BOLD response is a complex 

response to the auditory stimulus of interest and the undesirable scanner 

noise in the background. Furthermore, it also precludes the use of a ‘pure’ 

silent baseline which is necessary for cognitive subtraction analysis. The 

difference in haemodynamic response between an active condition and a 
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baseline condition with scanner noise is not equal to the difference between 

the active condition and silence (Gaab et al., 2007). The constant noise 

further constrains accurate modeling of physiological responses as it results 

in adaptation or habituation of the response to the stimulus whose relative 

magnitude varies across cortical fields (Di Salle et al., 2001). Another 

problem is that the BOLD response varies with the absolute level of the 

stimulus (Jäncke et al., 1998) and thus it becomes difficult to quantify the 

effects of the background noise (Belin et al., 1999; Edmister et al., 1999; 

Talavage and Edmister, 2004). Apart from the loud unpleasant experience 

for the listener, the scanner noise makes it difficult to hear the stimulus 

which changes the nature of the perceptual task to an auditory figure-ground 

discrimination task (Scheich et al., 1998). This may result in an interaction 

between task and background noise that is not modeled in the experimental 

design (Hall et al., 1999). 

2.2.2.2 Auditory imaging protocols 

In order to avoid the problems posed by the scanner noise, a number 

of alternative imaging approaches have been developed. These include the 

use of quiet acquisition sequences (Belin et al., 1999; Sander et al., 2003), 

enhanced passive and active noise attenuation techniques (Chambers et al., 

2001; Ravicz and Melcher, 2001) and development of ‘silent’ or ‘sparse’ 

imaging protocols that circumvent the issue of the scanner noise (Belin et 

al., 1999; Hall et al., 1999; Talavage and Hall, 2012).  

Belin and colleagues (1999) developed an event-related paradigm 

and introduced a silent period between successive volume acquisitions. The 
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silent period was 9 seconds long and the stimuli of interest were jittered 

within the silent phase so as to map different points of the haemodynamic 

response function. In this approach, all images are acquired at the end of the 

TR as opposed to continuous imaging protocols. Typical TR values are 

between 10-16 seconds which minimizes overlap between the HRFs of the 

stimuli and the scanner noise. Hall and coworkers (1999) implemented a 

similar approach but acquired a volume at the predicted peak of the 

haemodynamic response. Such ‘sparse’ imaging protocols significantly 

improve the SNR albeit at the cost of limited temporal resolution. 

Additional limitations include extended scanning times to obtain reasonable 

SNR, subject fatigue and movement and loss of attention.  

Generally, the choice of the imaging protocol depends on the 

question being addressed. The biological significance of the task must also 

be considered: an auditory task in a continuous scanning paradigm 

effectively becomes a figure-ground discrimination task where the target 

sounds of interest must be discriminated from the ongoing scanner noise in 

the background. If it is required to precisely map the HRF at different time 

points, then a continuous acquisition sequence is preferable. However, if the 

question is geared towards elucidating the sensory representation of specific 

acoustic features, then it is best to use sparse imaging protocols. In the work 

presented in this thesis, the imaging experiment was based on continuous 

acquisition as many trials were required for each parameter of interest to 

obtain a suitable SNR.  
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2.2.3 Image analysis 

The analysis of functional MRI data requires several sophisticated 

pre-processing algorithms to obtain a veridical measurement of the spatial 

extent of brain activity at the single-subject level as well as at the group 

level on a common spatial reference frame. Specifically, the imaged 

volumes need to be realigned to account for movement of the listeners, 

normalised to a standard spatial reference frame to allow between-subject 

comparisons, and smoothed to increase the SNR. Careful modeling of the 

experimental design and statistical analysis is essential to eliminate any false 

positives which can prove to be a major hindrance due to the multiple 

comparisons problem.  

These pre-processing steps were carried out using Statistical 

Parametric Mapping (SPM8) software (http://www.fil.ion.ucl.ac.uk/spm) 

implemented in MATLAB 2010 (MathWorks Inc.). A brief description of 

the theoretical principles underlying these procedures is described below. 
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Figure 2.1: Steps for pre-processing and analysis of fMRI data.  

(A) Raw brain images are first realigned to correct for subject movement and 

session effects, using an algorithm that minimises variance between images.      

(B) Realigned images are normalised to a brain template to transform them into a 

common stereotactic space and to correct for individual anatomical differences. 

(C) Normalised images are smoothed using a Gaussian filter of specified full-width 

at half maximum. This step improves signal to noise ratio by increasing overlap 

between adjacent voxels, with corresponding reduction in spatial resolution. 

(D) Data from smoothed images are analysed using a specified model: this 

includes convolution with a haemodynamic response function to account for the 

time course of cerebral blood flow in relation to neuronal activity. 

(E) A design matrix is generated based on the general linear model, rows 

corresponding to scan number and columns to trials (effects or covariates of 

interest), with additional columns corresponding to effects or covariates of no 

interest (e.g., global cerebral blood flow for each subject). A software package 

(such as SPM) is used to estimate statistics on the design matrix. The parameter 

estimates in the column vectors are adjusted mean least squares estimates of the 

effects of interest (discounting effects of no interest); a contrast between 

experimental conditions is defined by a vector that represents a weighted sum of 

parameter estimates. Based on the null hypothesis that the effect of interest does 

not account for more signal variance than could be explained by chance (according 

to the assumptions of Gaussian random field theory), a t statistic can be derived at 

each voxel as the ratio of the contrast-weighted parameter estimates to the 

estimated standard error term for that voxel. The t statistics across brain voxels 

together constitute a statistical parametric map of brain activation for that contrast. 

Activations are thresholded at a specified significance level, typically p < 0.05 

corrected for the effects of multiple comparisons across the brain volume or for the 

false discovery rate. 

(F) A statistical parametric map (SPM) of the statistic can be plotted as ‘glass brain’ 

projections in axial, coronal and sagittal planes or rendered onto a structural 
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template (a canonical brain, group mean MRI, or the subject’s own structural MRI) 

to indicate relationships of activation to brain anatomy. 
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2.2.3.1 Realignment and unwarping 

fMRI time series are often contaminated due to the movement of the 

listeners. Head movement in particular is detrimental to accurate 

reconstruction of brain activity as it changes the location of a given voxel in 

a particular brain area. Thus, even tiny movements can result in 

misalignment across successive scans which can contaminate the data 

(Friston et al., 1995a) and contribute as much as 90% of the variance 

(Friston et al., 1996b). This can lead to misinterpretation of signal changes 

as brain ‘activations’ whose magnitude may be larger than the physiological 

response of interest. Smaller movements due to cardiac cycle variations are 

also a source of misalignment, especially in the brainstem structures. Thus, 

movement that may or may not be correlated to the experimental task poses 

a significant problem as it may be misattributed as activation and impair the 

detection of veridical brain responses. This makes motion correction of EPI 

particularly important to obtain true measures of brain activity. 

Motion artifacts are reduced via procedures that realign successive 

images of a time series to a common spatial reference frame (usually the 

first image of the time series). This realignment is based on a least squares 

approach and a 6 parameter (three translations and three rotations) affine 

‘rigid-body’ spatial transformation to calculate the movement associated 

with each scan (Friston et al., 1995a; Andersson et al., 2001). These 

parameters are used to ‘reslice’ the image to the new grid coordinates 

determined by the transformation (Grootonk et al., 2000). Additional motion 

artifacts due to magnetic inhomogeneities at air-tissue interfaces such as the 
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orbitofrontal cortex results in deformations in the sampling matrix 

(Andersson et al., 2001) and are further distorted by movement. This is 

accounted by an unwarping algorithm and the use of field maps which 

model these field inhomogeneities and associated geometric distortions 

(Hutton et al., 2002; Cusack et al., 2003). 

2.2.3.2 Normalisation 

Individual brains vary vastly in their anatomy and thus it is 

important to normalise imaged volumes from different individuals onto a 

common anatomical reference space. A nonlinear warping algorithm is used 

to coregister functional brain activity with structural scans. In SPM, the 

‘realign and unwarping’ procedure creates a mean functional image that is 

used to estimate warping parameters to map it onto a standard stereotactic 

space. There are a number of standard neuroanatomical models that are 

based on either ‘canonical’ brains (Talairach and Tournoux, 1988; Toga et 

al., 1994) or average brains based on data from several individual brains 

(Evans et al., 1993; Roland and Zilles, 1994; Mazziotta et al., 1995). The 

normalisation is achieved via a 12-parameter affine transformation to obtain 

a spatial transformation matrix followed by a nonlinear estimation of spatial 

deformation patterns. 

2.2.3.3 Smoothing 

In the final stage of image pre-processing, the normalised data are 

smoothed by convolution with a Gaussian kernel of a specific width. This 

step is necessary to reduce noise (increase SNR) and effects due to residual 

differences in functional and gyral anatomy during inter-subject averaging 
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(Friston, 2003b). The Gaussian kernel typically has a full-width-at-half-

maximum (FWHM) equal to 2-3 times the size of the voxel. The 

convolution improves the fit between the imaging data and the assumptions 

of Gaussian random field theory used for statistical analysis of brain 

activations as discussed below. The residual errors are rendered more 

normal, ensuring the application of parametric statistical tests. Generally, a 

kernel of 6mm FWHM is used at the individual subject level and a kernel of 

8mm FWHM is appropriate at the group level. 

2.2.4 Statistical analysis 

The imaging experiment described in chapter 5 in this thesis was 

analysed using SPM8. The signal at every voxel is assumed to have a 

normal distribution under the null hypothesis of no regionally specific 

effects. This hypothesis is tested at each voxel using a mass-univariate 

approach based on General Linear Models (GLMs). It consists of a few 

steps which are described below in greater detail: i) specification of a GLM 

design matrix, ii) estimation of GLM parameters using classical or Bayesian 

approaches, and iii) assessment of results using contrast vectors to obtain 

Statistical Parametric Maps (SPMs) of regional brain activity. 

2.2.4.1 General Linear Model 

The GLM provides a theoretical framework for statistical analysis of 

functional imaging data using common parametric tests like Student’s t test 

or analysis of variance (ANOVA). This method, the GLM, models the 

signal intensity in each voxel as the linear combination of effects of interest, 
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effects of no interest (or confounds) and error terms as given by the 

following matrix equation:  

SX = SGβ + SHγ + Se        (Eq. 2-7) 

where X is the data matrix comprising signal intensity values, G is a matrix 

reflecting the experimental variables as a linear combination of regressors, β 

is a matrix of parameter estimates for the effects of interest, H is a matrix 

including covariates of no interest or confounds such as motion parameters, 

γ is a matrix of effects of no interest, e is a matrix of normally distributed 

error terms and S is a convolution matrix that models the haemodynamic 

response function (Friston et al., 1995b). G, H, and S are specified in the 

design matrix which has one row for each scan and one column for each 

variable of interest. Effects of interest are modeled as box car functions. The 

parameter estimates in β are adjusted mean least-square estimates of the 

effects of interest and are contrasted against each other by appropriately 

weighted contrast vectors. A t statistic can then be generated for each voxel 

as the ratio of contrast-weighted parameter estimates to the estimated 

standard error term. 

2.2.4.2 Random Field Theory 

For testing the significance of the activations in each voxel, 

Gaussian Random Field Theory is invoked which assumes that under the 

null hypothesis, the statistical parametric maps of the parameter estimates 

for each voxel are distributed according to a certain probability distribution 

function, usually a t or F distribution. Any deviations of this distribution that 
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exceed a pre-specified statistical threshold can be attributed to the variables 

of interest with a probability of 1 – α, where α is the Type I error related to 

false rejection of the null hypothesis.  

Normal correction methods for multiple comparisons are impractical 

in the case of fMRI data due to the vast number of observations, or voxels. 

Thus, an appropriate statistical framework is necessary to control the false 

positive rate. Conventional Bonferroni correction (where the false positive 

rate is simply divided by the number of independent observations) is 

impractical as it results in a very stringent statistical threshold. Furthermore, 

the signal intensity values in the voxels are not truly independent due to 

spatial correlations among neighbouring voxels and the spatial extent of the 

haemodynamic response function. The use of a conservative threshold 

decreases the likelihood of detecting true activation. Therefore, by 

convention, a significance threshold of p < 0.001 (uncorrected) is used for 

brain areas which are a priori predicted to be activated as a function of the 

experimental variables. Another solution for analysing activations in 

predicted brain areas is to restrict analysis to a discrete volume specified by 

that hypothesis, which is known as ‘small volume correction’. For other 

brain regions, it is advisable to use a correction for multiple comparisons 

based on family wise error (FWE) rate (Logan and Rowe, 2007; Nandy and 

Cordes, 2007) or false discovery correction rate (Genovese et al., 2002).  

2.2.4.3 Random-effects analysis 

In analysis of fMRI data, the level of statistical inference is an 

important consideration (Friston et al., 1999). There are two principal types 
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of analyses: fixed-effects and random-effects analyses, which vary with 

respect to how data from multiple subjects is regarded at the level of the 

population at large.  

In a fixed-effects analysis, the underlying assumption is that the 

variability in activation for a particular effect of interest is fixed and does 

not vary between subjects. Here, inter-subject variability is disregarded and 

time series of data from multiple subjects are treated as different sessions 

within a longer time series and only the error variance between scans is 

modelled. The number of degrees of freedom is high for fixed-effects 

analysis and is slightly less than the total number of brain volumes.  

Random-effects analysis, on the other hand, treats the variability in 

activation between subjects as a random variable and allows inference about 

the average behaviour of a voxel across the population of subjects. Here, the 

degrees of freedom are equal to n – 1, where n is the total number of 

participants. Typically, 8-16 participants are required for obtaining reliable 

estimates of inter-subject variability. This is achieved through a two-step 

procedure, where contrasts between parameters of interest are estimated at 

the first level for each participant before evaluating these at the second level 

(for instance using a t test). The fMRI study reported in this thesis was 

based on random effects analysis. 
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2.3 Magnetoencephalography  

“A recording of a component of the magnetic field vector as a 

function of time, at the head, is called a magnetoencephalogram”, wrote 

David Cohen in the landmark paper in Science reporting the first 

measurements of the magnetic field around the human brain (Cohen, 1972). 

Since then, magnetoencephalography (MEG) has made significant advances 

and is regarded as an important non-invasive imaging method in cognitive 

neuroscience. The main attraction of MEG is its high temporal resolution, 

on the order of milliseconds, that enables precise tracking of brain dynamics 

during perception and cognition.  

The electrical sources in the brain that produce the scalp potentials of 

the electroencephalogram (EEG) are also responsible for the magnetic field 

around the head. The principal advantage of using EEG or MEG over fMRI 

is that they are directly and instantaneously related to the actual neuronal 

generators, i.e., dendritic activity in pyramidal cells of the cortex (Cohen 

and Halgren, 2009). Spiking activity does not produce a magnetic field due 

to the random spatial arrangement of the underlying currents. This is in 

contrast to fMRI where the measured signal is only indirectly related to the 

underlying neuronal activity via neurovascular coupling. Furthermore, MEG 

is able to measure brain activity as it evolves every millisecond unlike the 

slow BOLD signal which takes up to 4-6 seconds to peak. These benefits 

have resulted in the worldwide adoption of MEG in research laboratories as 

well as hospitals as a powerful tool for basic and clinical neuroscience (Hari 

and Salmelin, 2012). 
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The sources of MEG as well as EEG signals are synchronous 

postsynaptic intracellular currents in the pyramidal cells of the cortex rather 

than spiking activity (Hari, 1990). This is because spikes produce magnetic 

quadropoles and the associated magnetic field decays at a faster rate with 

distance (1/r
3
) as compared to the dipolar field produced by postsynaptic 

currents that decays as at a rate proportional to 1/r
2
. Also, action potentials 

are transient events that decay with a couple of milliseconds unlike 

postsynaptic potentials that evolve over tens of milliseconds during which 

several cells can contribute to the magnetic field strength.  
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Figure 2.2. Sensitivity of MEG and EEG to tangential and radial dipoles.  

MEG is sensitive to activity from dipoles oriented tangentially but not radially whilst 

EEG picks up signals from sources in both orientations relative to the skull. Figure 

reproduced from Cohen and Halgren, 2009. 
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The net current flow in pyramidal neurons is perpendicular to the 

cortical surface. The MEG signal, however, is most sensitive to dipoles that 

are tangential to the skull, in the sulci, whereas EEG can pick up signals 

from dipoles that are both tangential and radial to the skul as indicated in  

figure 2.2 (Hari, 1990; Hämäläinen et al, 1993). MEG and EEG thus 

complement each other because of their differential sensitivities to source 

orientations and locations.  

2.3.1 Instrumentation 

The magnetic field measured by the MEG is very weak with typical 

field strengths less than 10
-12

 T. This is much smaller than urban fluctuating 

magnetic background (10
-7

 T) or even the Earth’s magnetic field of 

approximately 0.5 x 10
-4

 T. Thus, in order to pick up the tiny fields due to 

brain activity, a magnetic detector of high sensitivity and reduction of 

environmental magnetic interference is absolutely essential. 

 Early MEG recordings used an induction-coil magnetometer with a 

couple of million turns of copper wire around a ferrite core and the MEG 

signal (alpha rhythm) was obtained by averaging against an EEG reference 

signal (Cohen, 1968). The earliest MEG device based on SQUIDs, 

superconducting quantum interference devices (Silver and Zimmerman, 

1965) was encased in a room with heavy magnetic shielding (Cohen, 1972). 

 Modern neuromagnetometers, however, contain an array of more 

than 300 SQUID sensors that operate at 4 K and are therefore immersed in a 

liquid helium dewar. Each SQUID is fed by a magnetic sensing coil which 
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is arranged in a spherical array over the head at grid points 2 or 3 cm apart. 

The spherical section is approximately 2 cm away from the scalp of the 

subject. The sensors allow simultaneous magnetic field measurements at 

several coil locations over the head, resulting in a continuous acquisition of 

magnetic field produced by brain activity.  

2.3.2 Data analysis 

MEG data is of high temporal resolution with typical sampling rates 

of 600 Hz or above. Analysis of such data requires computational resources 

including high memory and sophisticated processing software (Baillet et al., 

2011) to process the raw data to obtain neuromagnetic measures of interest 

such as evoked field strengths, frequency-time response maps, source 

models of evoked activity or effective connectivity patterns based on 

hierarchical generative models using Dynamic Causal Modeling (Friston et 

al., 2003; Kiebel et al., 2009).  

In terms of data processing, MEG analysis is not as standardized as 

is the case for fMRI for which automated analysis pipelines exist. There is a 

recent trend of trying to standardize the MEG analysis methods and develop 

good practical measures for conducting and reporting MEG research (Gross 

et al., 2013). Furthermore, there is also useful cross-talk between different 

methods communities to integrate algorithms that complement the strengths 

of different software such as FieldTrip (Oostenveld et al., 2011) or SPM 

(Litvak et al., 2011). 
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2.3.3 Data pre-processing and analysis 

The MEG data reported in this thesis was collected using a CTF275 

scanner at a sampling rate of 600 Hz and analyzed using SPM12 (Litvak et 

al., 2011). The first step in pre-processing involves converting the raw data 

into a format that is compatible with the particular software used to analyze 

the data. In order to save computational resources, it is advisable to 

downsample the data so that subsequent files are smaller in size and easier 

to work with. The cut-off frequency depends on the specific paradigm but it 

is common to downsample the converted data to 300 Hz to include potential 

high frequency components of interest. The next step involves defining data 

epochs of interest, i.e. defining time windows to divide the data into 

individual trials with a pre- and post-stimulus baseline period. A pre-

stimulus baseline period (usually 500ms or longer) is specified to baseline 

correct the data. The baseline could be a silent period or irrelevant sounds as 

well (e.g. white noise in studies of pitch perception). The different stimulus 

conditions are also specified during epoching which allows comparison of 

brain activity across stimulus conditions.  

Analysis of evoked data involves measuring components that are 

time-locked to the presentation of the stimulus. Auditory evoked potentials 

are usually measured in EEG and MEG experiments and include a variety of 

responses that reflect different cognitive processes. The M100 is an evoked 

response that is produced in response to the onset of a sound with an 

average latency of ~ 100ms. The M100 is typically mediated by sources in 

the auditory cortex (Lutkenhoner et al., 2003) and serves as a sanity check 
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in MEG studies of auditory perception. The MMN is another auditory 

evoked potential that has been studied in detail (Näätänen et al., 2007) as 

discussed in section 1.5.2. Other auditory evoked fields of interest include 

the M50, M200 and M300 (Nagarajan et al., 2010). 

To obtain measures of evoked brain activity, the next pre-processing 

step usually involves applying a low-pass filter with a typical cut-off 

frequency of 30 Hz. The resultant MEG time-series data are averaged across 

all stimulus presentations to obtain mean evoked field strengths. The 

averaging procedure eliminates any induced components that are not time-

locked to the stimulus. The averaged evoked fields are analyzed separately 

for each condition of interest and appropriate statistical tests are performed 

to obtain a summary of the evoked fields across stimulus conditions. 

2.3.4 Source reconstruction 

Source reconstruction of MEG time-series is an ill-posed problem: 

there exist an infinite number of solutions to the inverse problem of 

identifying brain sources that produce activity observed at the sensors. This 

problem can be resolved by making certain assumptions about the sources in 

order to constrain the solutions. A number of source modeling methods exist 

which make different assumptions about how the brain works: these include 

Variational Bayes Equivalent Current Dipole (VBECD; Kiebel et al., 2008), 

Multiple Sparse Priors (MSP; Friston et al., 2008), Minimum Norm 

Estimates (MNE, Hauk, 2004), and Beamforming (van Veen et al., 1997) 

amongst others.  
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An “imaging” (or distributed) approach implemented in SPM12 

(Litvak et al., 2011) was used to reconstruct the sources of evoked power in 

the MEG experiment (see chapter 6). This approach involves projecting the 

sensor data into 3D brain space and considers sources to comprise of a large 

number of dipolar sources spread over the cortical sheet with specific 

locations and orientations. Source amplitude or power (evoked or induced) 

can be estimated for a specified time window and frequency range. This 

reconstructed activity is in 3D voxel space and can be analyzed using GLM-

based statistical approach as implemented for making inference in fMRI 

data.  

Distributed linear models have been used previously (Dale and 

Sereno, 1993) but the imaging approach in SPM incorporates two additional 

features which improve the accuracy of the localization procedure:  

i) A Bayesian framework is incorporated in which several constraints 

(or priors) can be imposed and the best model can be determined 

through Bayesian Model Comparison (Friston et al., 2005) 

ii) Spatial localization is improved by including the subject’s own 

structural anatomy in the generative model of the data. 

The next section briefly describes the steps involved in obtaining the 

inverse reconstruction.  
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2.3.4.1 Source space modeling 

Data containing carefully defined epochs for each experimental 

condition is taken as the input for source space modeling. This involves 

generating individual head meshes describing the boundaries of different 

head compartments based on the subject’s structural scan. A template head 

model can also be used in case a structural scan is not available which 

results in a precise head model. The resultant cortical mesh describes the 

locations of the sources of the MEG signal and can be specified to have 

different resolution. A “normal” mesh containing 8196 vertices is generally 

used for reasons of computational efficiency. 

2.3.4.2 Coregistration 

The coordinate space in which the MEG sensors are specified need 

to match the coordinate system of the corresponding structural MRI image 

(or MNI space) in order to make accurate interpretations about the sources 

of brain activity. Coregistration involves linking these two coordinate 

systems via a set of three anatomical landmarks (or fiducials) whose 

coordinates are known in both systems. These fiducial points include the left 

and right preauricular points and the nasion. Essentially, this step requires 

specifying the points in the structural image that correspond to the MEG 

fiducials.  

2.3.4.3 Forward modeling 

This step involves generating a forward model that captures the 

effect of the dipoles (on the cortical mesh) at the level of the sensors. The 
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result is specified as a matrix which has N sensors and M mesh vertices. 

Each column is called the “lead field” matrix corresponding to one mesh 

vertex. A number of forward models can be specified and for MEG, a single 

shell model is typically used. The lead field matrices are used for 

subsequent inversion of the data. 

2.3.4.4 Inverse reconstruction 

Here, an imaging approach based on the IID model based on 

classical minimum norm was used which assumes that out of all possible 

source configurations that can explain the measured data, the configuration 

with the minimum overall source power represents the most optimal 

solution, i.e., it assumes that the brain is an efficient machine and makes 

optimal use of its energy resources. Time window and frequency range of 

interest can be specified to localize evoked or induced power. Spatial priors 

can also be specified to simplify the model and the relative accuracy of each 

model can be determined through Bayesian model comparison.  
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Chapter 3. PSYCHOPHYSICS   

 

Summary  

In contrast to the complex acoustic environments we encounter in 

everyday life, research in auditory scene analysis is generally based on 

relatively simple signals such as the streaming paradigm. Study 1 presents a 

new synthetic stimulus designed to examine the detection of coherent 

patterns (“figures”) from overlapping “background” signals. The stimulus 

incorporates stochastic variation of the figure and background that captures 

the rich spectrotemporal complexity of natural acoustic scenes. Figure and 

background signals overlap in spectrotemporal space, but vary in their 

statistics of fluctuation and the only way to extract the figure is by 

integrating the patterns over frequency and time. A series of behavioural 

experiments are reported which demonstrate that human listeners are 

remarkably sensitive to the emergence of such figures and can tolerate a 

variety of spectral and temporal perturbations. This robust behaviour is 

consistent with the existence of automatic auditory segregation mechanisms 

that are highly sensitive to correlations across frequency and time.  
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3.1 Introduction 

This study considers the behavioural bases of segregation in a novel 

stochastic figure-ground (SFG) stimulus that is more representative of 

natural acoustic environments which consist of multiple sound sources, such 

as a busy street market or an orchestral performance. Although we do it 

effortlessly, the separation of such mixtures of sounds into perceptually 

distinct sound sources is a highly complex task. In spite of being a topic of 

intense investigation for several decades, the neural bases of auditory object 

formation and segregation still remain to be fully explained (Cherry 1953; 

McDermott, 2009; Griffiths et al., 2012). 

The most commonly used signal for probing auditory perceptual 

organization is a sequence of two pure tones alternating in time that, under 

certain conditions, can “stream” or segregate into two sources (van 

Noorden, 1975; Bregman, 1990). Much research based on these streaming 

signals has been performed to elucidate the neural substrates and 

computations that underlie auditory segregation (Moore et al., 2012; Snyder 

et al., 2012; Denham and Winkler, 2013). A prominent model of auditory 

stream segregation was proposed by Fishman and colleagues who recorded 

multi-unit activity from the auditory cortex of macaques in response to a 

simple streaming sequence (Fishman et al., 2001, 2004). For large frequency 

differences and fast presentation rates, which promote two distinct 

perceptual streams, they observed spatially segregated responses to the two 

tones. This pattern of segregated cortical activation, proposed to underlie the 

streaming percept, has since been widely replicated (e.g. Bee and Klump, 
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2004, 2005; Gutschalk et al., 2005, 2007; Micheyl et al., 2005; Wilson et al., 

2007; Bidet-Caulet et al., 2007; Dykstra et al., 2011) and attributed to basic 

physiological principles of frequency selectivity, forward masking and 

neural adaptation (Fishman et al., 2001; Micheyl et al. 2007a; Fishman and 

Steinschneider, 2010a). These properties are considered to contribute to 

streaming by promoting the activation of distinct neuronal populations in the 

primary auditory cortex (PAC) that are well separated along the tonotopic 

axis (Fishman et al., 2001; Carlyon, 2004; Micheyl et al., 2007a). Human 

imaging studies that directly correlated the perceptual representation of 

streaming sequences with brain responses also support the correspondence 

between the streaming percept and the underlying neural activity in PAC 

(Gutschalk et al., 2005; Snyder et al., 2006; Wilson et al., 2007, but see 

Cusack, 2005). However, similar effects have also been shown at the level 

of the cochlea (Pressnitzer et al., 2008), suggesting that segregation might 

occur earlier in the ascending auditory pathway rather than be achieved in 

the auditory cortex (Hartmann and Johnson, 1991; Beauvois and Meddis, 

1991, 1996; Denham and McCabe, 1997). 

A prominent shortcoming, however, of the streaming stimulus is that 

it uses relatively simple, temporally regular narrowband signals that do not 

model the rich spectrotemporal diversity of natural sound environments. To 

overcome these limitations, a more spectrally rich signal referred to as the 

“informational masking” (IM) stimulus (Neff and Green, 1987; Kidd et al., 

1994, 1995; Durlach et al., 2003) has been examined by several groups. IM 

refers to a type of non-energetic non-peripheral masking that is associated 

with an increase in detection thresholds due to stimulus uncertainty and 
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target-masker similarity (Pollack, 1975; Durlach et al., 2003). These multi-

tone masking experiments were based on the detection of tonal targets in the 

presence of simultaneous multi-tone maskers, often separated by a “spectral 

protection region” (a certain frequency region around the target with little 

masker energy) that promoted the perceptual segregation of the target from 

the masker tones (Neff and Green, 1987; Kidd et al., 1994, 2003, 2011). 

Results from such experiments suggest that performance significantly 

depends on the width of the spectral protection region (Micheyl et al, 2007b; 

Elhilali et al, 2009b), and has been hypothesized to rely on the same 

adaptation-based mechanisms as proposed in the context of simple 

streaming signals (Micheyl et al., 2007b; Fishman and Steinschneider, 

2010a). 

However, the sounds that we are generally required to segregate are 

distinct from the narrowband signals used in streaming and IM stimuli and 

are often broadband with multiple frequency components that temporally 

overlap with other signals. Indeed, the ability of models inspired by such 

simplistic paradigms to describe stream segregation is currently under 

debate. A new model of scene analysis was recently proposed based on the 

demonstration that when the two tones in a streaming signal are presented 

synchronously, listeners perceive the sequence as one stream irrespective of 

the frequency separation between the two tones (Elhilali et al., 2009a), a 

result that is inconsistent with the predictions based on adaptation-based 

models (Fishman et al., 2001; Micheyl et al., 2005). At the neural level, 

there was no difference in responses to the synchronous and alternating 

sequence of tones that still resulted in different perceptual states. The 
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authors suggested that in addition to separation in acoustic features (e.g. 

pitch, intensity, spatial location), “temporal coherence” between the 

elements that comprise a scene is essential for segregation such that 

temporally incoherent patterns lead to a segregated percept whilst temporal 

coherence promotes an integrated percept (Shamma et al., 2011, 2013; also 

see Fishman and Steinschneider, 2010b; Micheyl et al., 2013a, b).  

In this study, a novel stimulus (Stochastic Figure-Ground; SFG) is 

introduced that consists of coherent (“figure”) and randomly varying 

(”background”) components that overlap in spectrotemporal space and vary 

in their statistics of fluctuation (see Figure 3.1). The frequency components 

that comprise the figure vary from one chord to another so that it can only 

be extracted by integrating across both frequency and time dimensions (see 

section 3.2.1 for more details). The insertion of a brief figure embedded in 

the random tonal background was used to simulate perception of a coherent 

auditory object in a noisy acoustic environment. A number of behavioural 

experiments were performed where two spectrotemporal dimensions of the 

figure were manipulated – the “coherence” or the number of repeating 

frequency components, and the “duration” or the number of chords present 

in the figure.  

Psychophysics was used to investigate listeners’ ability to detect the 

complex figures and test the segregation performance in the context of 

several spectral and temporal perturbations. The results demonstrate that 

listeners are remarkably sensitive to the emergence of such figures (see 



166 

 

Figure 3.2) and can withstand a number of spectrotemporal manipulations 

designed to potentially impair spectrotemporal integration (see Figure 3.3).  
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Figure 3.1: Stochastic figure-ground stimulus.  

(A) Signals consisted of a sequence of 50-ms-long chords containing a random set 

of pure tone components.  

(B) In 50% of the signals, a subset of tonal components repeated in frequency over 

several consecutive chords, resulting in the percept of a “figure” popping out of the 

random noise. The figure emerged between 15 and 20 chords (750 –1000 ms) 

after onset. The number of repeated components (the “coherence” of the figure) 

and the number of consecutive chords over which they were repeated (the 

“duration” of the figure) were varied as parameters. The plots represent auditory 

spectrograms, generated with a filter bank of 1/ERB (equivalent rectangular 

bandwidth) wide channels (Moore and Glasberg, 1983) equally spaced on a scale 

of ERB-rate. Channels are smoothed to obtain a temporal resolution similar to the 

equivalent rectangular duration (Plack and Moore, 1990). 
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3.2 Materials and Methods 

3.2.1 Stochastic figure-ground stimulus 

A novel synthetic stimulus was designed to model naturally complex 

situations characterized by a figure and background that overlap in feature 

space and are only distinguishable by their fluctuation statistics. Contrary to 

previously used signals, the spectrotemporal properties of the figure vary 

from one moment to another and the figure can only be extracted by binding 

the figure components across frequency and time. 

Figure 3.1A shows the spectrogram of the SFG stimulus which 

consists of a sequence of random chords, each 50ms in duration with 0ms 

inter-chord-interval, presented for a total duration of 2000ms (40 

consecutive chords). Each chord contains a random number (average: 10 

and varying between 5 and 15) of pure tone components that are randomly 

selected from a frequency pool of 129 frequencies. These frequencies are 

equally spaced on a logarithmic scale between 179 and 7246 Hz such that 

the separation between successive components is equal to 1/24
th

 of an 

octave. The onset and offset of each chord are shaped by a 10ms raised-

cosine ramp. In half of these stimuli, a random number of tones are repeated 

across a certain number of consecutive chords (e.g. in Figure 3.1B, four 

components marked by arrows repeat across seven chords) that results in the 

“pop-out” of the figure from the background. To eliminate correlation 

between the figure and background components, the figure was realized by 

first generating the random background and then adding additional, 

repeating components to the relevant chords. To avoid the confound that the 
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interval containing the figure might, on average, contain more frequency 

components, and to prevent listeners from relying on this cue, the remaining 

50% of the stimuli (those containing no figure as in Figure 3.1A) also 

included additional tonal components, that were added over a number of 

consecutive chords (equal to the duration of the figure) at the same time as 

when a figure would have appeared. However, these extra components 

varied from one chord to the other and did not repeat to form a coherent 

pattern.  

In the present study, the number of consecutive chords over which 

the tones were repeated (“duration”) and the number of repeated frequency 

components (“coherence”) was parametrically varied. The onset of the 

figure was jittered between 15-20 chords (750-1000ms) post stimulus onset.  

3.2.2 Participants 

All participants reported normal hearing and had no history of 

audiological or neurological disorders. Experimental procedures were 

approved by the research ethics committee of University College London 

(Project ID number: 1490/002), and written informed consent was obtained 

from each participant. For each experiment the number of listeners whose 

data are included in the final analysis is reported. In each experiment, a few 

listeners (2-3) were excluded because of their inability to reliably perform 

the task.  

9 listeners (2 females; aged between 20 and 47 years; mean age: 26.9 

years) took part in experiment 1. 9 listeners (6 females; aged between 22 



171 

 

and 28 years; mean age: 23.8 years) participated in experiment 2 based on 

the AXB design. 10 listeners (5 females; aged between 20 and 36 years; 

mean age: 25.7 years) took part in experiment 3. 10 listeners (5 females; 

aged between 23 to 31 years; mean age: 26.8 years) participated in 

experiment 6a. 27 listeners (Group 1: 9 listeners; 5 females, aged between 

19 and 27 years; mean age: 21.1 years; Group 2: 10 listeners; 3 females; 

aged between 19 and 25 years; mean age: 21.3 years; Group 3: 8 listeners; 3 

females; aged between 19 and 29 years; mean age: 22.4 years) participated 

in experiment 6b. 10 listeners (6 females; aged between 21-34 years, and 

mean age of 24.7 years) participated in experiment 4a with ramp step equal 

to 2 and another group of 10 listeners (3 females; aged between 20-30 years 

and mean age of 24.5 years) took part in experiment 4b with ramp step of 5. 

10 listeners (5 females; aged between 22-31 years, mean age: 24.8 years) 

participated in experiment 5.  
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3.2.3 Stimuli 
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Figure 3.2: Examples of Stochastic Figure-Ground stimuli.  

All stimuli contain 4 identical frequency components (only for illustrative purposes: 

these were selected randomly in the experiments) with Fcoh = 1016.7 Hz, 2033.4 

Hz, 3046.7 Hz, and 4066.8 Hz repeated over 6 chords and indicated by the black 

arrows. The figure is bound by a black rectangle in each stimulus.  

(A) Chord duration of 50ms: Stimulus comprises of 40 consecutive chords each 

of duration 50ms with a total duration of 2000ms.  

(B) Chord duration of 25ms: Stimulus comprises of 40 consecutive chords each 

of duration 25ms with a total duration of 1000ms.  

(C) Ramped figures: Stimulus comprises of 40 consecutive chords each of 

duration 50ms each (like A) but the frequency components comprising the figure 

increase in frequency in steps of 2*I  or 5*I, where I = 1/24
th
 of an octave, 

represents the resolution of the frequency pool.  

(D) Isolated figures: Stimulus comprises only of the “figure present” portion 

without any chords preceding or following the figure. The duration of the stimulus is 

given by the number of chords.  

(E) Chords interrupted by noise: Stimulus comprises of 40 consecutive chords 

alternating with 40 chords comprising of loud, masking broadband white noise, 

each 50ms in duration. In experiment 6b, the duration of the noise was varied from 

100ms to 500ms. 
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SFG stimuli in experiment 1 (figure 3.2A) consisted of a sequence of 

50ms chords with 0ms inter-chord interval and 2 s duration (40 consecutive 

chords). The coherence of the figure varied between 1, 2, 4, 6 or 8 and the 

duration of the figure ranged from 2-7 chords. Stimuli for all combinations 

of coherence and duration (equal to 30) were presented in separate blocks 

where 50% of the trials (50 trials per block) contained a figure.  

Stimuli for experiment 2 comprised 50ms chords with a coherence 

value of 6. Figure duration varied between 4, 8 and 12 (in separate blocks). 

Stimuli, all containing a figure, were presented in triplets as in an AXB 

design (e.g. Goldinger, 1998). The background patterns were different in all 

3 signals but two of them (either A and X or B and X) contained identical 

figure components. Listeners were required to indicate the “odd” figure (A 

or B) by pressing a button. Three blocks of 60 trials each were presented for 

each duration condition.  

Stimuli for experiment 3 were identical to those in experiment 1 

except that the duration of each chord was reduced to 25ms (figure 3.2B). 

The coherence of the figure varied between 2, 4, 6 or 8 and the duration of 

the figure ranged from 2-7 chords resulting in a total of 24 blocks.  

In experiments 4a and 4b, stimuli were similar to those in 

experiment 1 except that in this condition, the successive frequencies 

comprising the figure did not repeat from one chord to the next but rather 

increased in frequency across chords in steps of 2*I or 5*I, where I = 1/24
th

 

of an octave is the resolution of the frequency pool used to create the SFG 
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stimulus (figure 3.2C). The coherence of the figure was 4, 6, or 8 and 

duration was 5, 7 or 9 chords resulting in a total of 9 blocks for each 

condition. In this experiment, however, the maximum duration of the figure 

(9 chords) is longer than the maximum duration of the figure in the 

remaining experiments (7 chords). 

The stimuli for experiment 5 were identical to the stimuli used in 

experiment 1 except that they comprised of the figure chords only (3-7 

chords or 150-350ms) without any chords that preceded or succeeded the 

figure as in previous experiments (figure 3.2D). The coherence of the figure 

was 2, 4, 6, or 8 chords and this resulted in a total of 20 blocks. 

For experiment 6a, the stimuli were modified so that successive 

chords were separated by 50ms broadband noise bursts (figure 3.2E). The 

loudness of the noise was set to a level 12 dB above the level of the stimulus 

chords. The coherence of the figure was 2, 4, 6 or 8 and the duration of the 

figure ranged from 3-7 chords resulting in a total of 20 blocks.  

In experiment 6b, the stimuli were identical to the previous 

experiment 6a except for the following differences: (a) coherence and 

duration were fixed at a value of 6; (b) the duration of the noise was varied 

in three different experiments in increasing order: group 1: 50, 100, and, 

150ms; group 2: 100, 200, and, 250ms; group 3: 100, 300, and, 500ms 

respectively. The 100ms condition was chosen as an anchor and only those 

participants who performed above a threshold of d’=1.5 in this condition 

were selected for the whole experiment.  
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3.2.4 Procedure 

Prior to the study, participants received training that consisted of 

listening to trials with no figures, easy-to-detect figures (high coherence and 

duration), difficult-to-detect figures (low coherence and duration) and a 

practice block of fifty mixed trials. In the actual experiments, the value of 

coherence and duration was displayed before the beginning of each block 

and participants were instructed to press a button as soon as they heard a 

figure (for the brief figures used here, these sounded like a ‘warble’ in the 

on-going random pattern). Feedback was provided. Blocks with different 

values of coherence and duration were presented in a pseudorandom order. 

The participants self-paced the experiment and each experiment lasted 

approximately an hour and a half. The procedure was identical for all 

experiments. 

3.2.5 Analysis  

Participants’ responses were measured in terms of sensitivity (d 

prime, or d’) and hit rates are also reported for certain conditions as mean ± 

one standard error. 

3.2.6 Apparatus 

All stimuli were created using MATLAB 7.5 software (The 

Mathworks Inc.) at a sampling rate of 44.1 kHz and 16 bit resolution. 

Sounds were delivered diotically through Sennheiser HD555 headphones 

(Sennheiser, Germany) and presented at a comfortable listening level of 60 

to 70 dB SPL that was adjusted by each listener. Stimuli were presented 
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using Cogent (http://www.vislab.ucl.ac.uk/cogent.php). Listeners were 

tested individually in an acoustically shielded sound booth. The apparatus 

was identical for all experiments. 

3.3 Results 

3.3.1 Experiment 1: Chord duration of 50ms 

In experiment 1, the basic SFG stimulus sequence was used to assess 

figure-detection (figure 3.1). Listeners’ responses were analyzed to obtain d’ 

for each combination of coherence and duration of the figure. The results 

(figure 3.3) show a clear effect of increasing performance with higher 

coherence and duration values. Hit rates (not shown) also mirrored d’ with 

listeners achieving mean hit rates of 93 ± 2% for the most salient 

coherence/duration combination. It is important to note that the figure 

patterns were very brief (longest figure duration was 7 chords or 350ms), 

yet high levels of performance were observed (and with minimal practice). 

This is consistent with the idea that the SFG stimulus taps low-level, finely 

tuned segregation mechanisms.   

 

http://www.vislab.ucl.ac.uk/cogent.php
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Figure 3.3: Behavioural performance in experiment 1.  

The d’ for experiment 1 (n = 9) are plotted on the ordinate and the duration of the 

figure (in terms of number of 50ms long chords) is shown along the abscissa. The 

coherence of the different stimuli in experiment 1 is colour coded according to the 

legend (inset). Error bars signify one standard error of the mean (SEM). 
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3.3.2 Experiment 2: Figure identification  

What underlies such robust sensitivity to brief figure patterns? Since 

“figure-absent” and “figure-present” signals were controlled for overall 

number of components (see section 3.2.1), a global power increase 

associated with the emergence of the figure can be discounted as a potential 

cue. However, it is possible that the listeners’ judgments are based on other 

features within the stimulus, such as the emergence of a figure might be 

associated with a change in the temporal modulation rate of a few frequency 

channels. The aim of experiment 2 was to investigate whether the detection 

of figures involves a specific figure-ground decomposition, namely whether 

the figure components are grouped together as a detectable “perceptual 

object” distinct from the background components, or whether listeners were 

rather detecting some low-level changes within the stimulus. To address this 

issue, stimulus triplets with different background patterns were created in 

which each stimulus contained a figure but the figure components were 

identical in two out of the three signals. Listeners were required to detect an 

“odd” signal that contained a figure that was different from the identical 

figure present in the other two signals in this AXB psychophysical 

paradigm. Results are shown in figure 3.4 and indicate that for the very 

short figure durations (4 chords, or 200ms) listeners had difficulty in 

discrimination (d’ = 0.31 ± 0.18; not significantly different from 0: p = 0.12, 

t = 1.72), but that performance increased significantly for a longer figure 

duration of 8 chords (400ms; d’ = 1.75 ± 0.34) and reached ceiling for a 

figure duration of 12 chords (600ms; d’ = 2.93 ± 0.26). These results 

indicate that figure detection in these stimuli may be associated with a 
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segregation mechanism that groups coherent components together as a 

distinct perceptual object.  
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Figure 3.4: Behavioural performance in experiment 2.  

The d’ for experiment 2 (n = 9) are plotted on the ordinate and the duration of the 

figure (in terms of number of 50ms long chords) is shown along the abscissa. The 

coherence of the stimuli was fixed (equal to 6) and three different levels of duration 

were tested. The AXB figure identification task was different from the single interval 

alternative forced choice experiments: listeners were required to discriminate a 

stimulus with an “odd” figure from two other stimuli with identical figure 

components. Error bars signify one SEM. 

 

 

 

 

 



182 

 

3.3.3 Experiment 3: Chord duration of 25ms 

In experiment 3, the duration of each chord was halved to 25ms, 

thereby reducing the corresponding durations of the figure and the stimuli 

(figure 3.2B). Here, the aim was to test whether figure-detection 

performance would be affected by such temporal scaling, i.e., whether 

figure-detection would vary as a function of the total duration of the figure 

(twice as long in experiment 1 vs. experiment 2) or the number of repeating 

chords that make up the figure (same in experiments 1 and 2). 

Behavioural results (figure 3.5A) reveal good performance, as in 

experiment 1. Listeners achieved mean hit rates of 92 ± 3% for the highest 

coherence/duration combination used. An ANOVA with coherence and 

duration  as within-subject factors and chord duration (50ms vs. 25ms) as a 

between-subject factor revealed no significant effect of condition (F1,15 = 2; 

P = 0.174), suggesting that performance relies on the number of repeating 

chords irrespective of their duration.  

3.3.4 Experiment 4: Ramped figures 

In the preceding experiments, figure components were identical 

across a certain number of chords. In experiment 4, figure components were 

manipulated such that instead of repeating across chords they were ramped, 

i.e., increasing in frequency from one chord to the next (figure 3.2C). The 

components in the frequency pool used to generate the SFG signals are 

separated equally by 1/24
th

 of an octave; and in the following two 

experiments, the frequency steps from one chord to the next were increased 

by 2 times (Experiment 4A; figure 3.5B – thick lines) or 5 times 
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(experiment 4B; figure 3.5B – thin lines) the frequency resolution (i.e., 

2/24
th

 octave and 5/24
th

 octave respectively).   

Robust performance was observed (maximum hit-rates of 0.97 and 

0.83 were obtained for figures with coherence equal to 8 and duration equal 

to 7 for the two ramp levels of 2 and 5 respectively) and a comparison with 

experiment 1 using an ANOVA with coherence and duration as within-

subject factors and stimulus type (repeating vs. ramp size 2 vs. ramp size 5) 

as a between-subject factor revealed a significant effect of condition: F2,25 = 

19; P < 0.001.  

Performance was found to be significantly worse for the ramp = 5 

vs. ramp = 2 condition (F1,18 = 21, P < 0.001), but, remarkably, listeners 

exhibited above-chance performance even for the steeper slope condition. 

This suggests that the underlying segregation mechanisms are more 

susceptible to spectral than temporal perturbations (as in experiments 3, and 

6 below) but can still integrate over dynamically changing, rather than fixed, 

figure components. 
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Figure 3.5: Behavioural performance in experiments 3-6.  

The d’ for experiment 3, 4a (thick lines; ramp step = 2), 4b (thin lines, ramp step = 

5), 5, 6a and 6b are shown here, as labelled in each figure (n = 10 for all 

conditions). The abscissa represents the duration of the figure (Figures 3.5A – 

3.5D) and the duration of the masking noise in Figure 3.5E. Note that the maximum 

duration value in experiments 4a and 4b is larger (9 chords) than in the other 

experiments. Error bars signify one SEM. 
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3.3.5 Experiment 5: Isolated figures 

Previous experiments consisted of stimuli that comprised a sequence 

of “background-only” chords, prior to the onset of the figure, and another 

sequence of “background-only” chords after figure offset. From first 

principles, segregation could be realized by adaptation to the ongoing 

background statistics and detection of the figure as a deviation from this 

established regular pattern. In order to test this hypothesis, in experiment 5, 

the “background” chords which preceded the occurrence of the figure were 

removed (figure 3.2D). The stimulus consisted simply of the chords that 

defined a brief figure of duration between 3-7 chords. 

Similar to previous experiments, the results (figure 3.5C) show a 

strong effect of the coherence and duration, and performance improved with 

increasing salience of the figures with listeners achieving average hit rates 

of 89 ± 5% for the most salient condition. To compare behavioural 

performance with respect to experiment 1, an ANOVA with coherence and 

duration as within-subject factors and experimental condition (with 

background vs. no background) as a between-subject factor was used. This 

yielded no significant effect of condition: F1,16 = 0.033; P = 0.859, 

suggesting that the “background-only” chords which preceded the figure did 

not affect performance. 

3.3.6 Experiment 6a: Chords interrupted by noise 

Experiment 6 consisted of stimuli that contained 50ms of loud, 

broadband masking noise between successive 50ms long SFG chords (see 

Figure 3.2E), in an attempt to disrupt binding of temporally successive 
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components. If figure detection is accomplished by low level mechanisms 

that are sensitive to a power increase within certain frequency bands, the 

addition of the noise bursts would disrupt performance by introducing large 

power fluctuations across the entire spectrum, thus reducing the overall 

power differences between channels. 

The results show decent behavioural performance (maximum hit rate 

of 0.93 was obtained for the most salient condition) which varied 

parametrically with the coherence and duration of the figure (figure 3.5D). 

An ANOVA with coherence and duration as within-subject factors and 

experimental condition (50ms repeating chords vs. 50ms chords alternating 

with white noise) as a between-subject factor revealed no significant effect 

of condition (F1,17 = 0.004; P = 0.953). Thus, interleaving the noise bursts 

between successive chords did not affect detection of the figures. 

3.3.7 Experiment 6b: Chords interrupted by extended noise  

A natural question that arises from the preceding experiment is – 

what are the temporal limits of segregation in SFG stimuli with interleaved 

white noise? To answer this question, the duration of the intervening noise 

bursts between stimulus chords was gradually varied in steps in three related 

experiments with different durations of noise for a particular combination of 

coherence (6) and duration (6). Results (figure 3.5E) indicate robust 

performance for all durations of noise up to 300ms and surprisingly, supra-

threshold performance (d’ = 1.00 ± 0.30; significantly different from 0: p = 

0.01; t = 3.29) even for a noise duration of 500ms. This remarkable ability 

of listeners to integrate coherent patterns over 3s long (in the case of 500ms 
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noise bursts) suggests that higher-order mechanisms may be involved that 

are robust over such long time windows.  

Temporal windows of integration, as long as 500ms, have rarely been 

reported in the context of auditory object formation. The results suggest the 

existence of a central mechanism that integrates the repeating pure tone 

components as belonging to a distinct object over multiple time scales. The 

long temporal windows of integration implicate cortical mechanisms at the 

level of the primary auditory cortex or beyond. 

3.4 Discussion 

In this study, a new stochastic figure-ground stimulus is introduced to 

examine segregation in complex acoustic scenes. Conceptually similar to the 

Julesz texture patterns (Julesz, 1962), the figure and background signals are 

indistinguishable at each instant in time and can be segregated only by 

integrating the patterns over frequency and time. An important perceptual 

characteristic of the SFG stimulus is the rapid buildup. For coherence levels 

of four components and above, as few as seven consecutive chords (a 

duration of 350ms) were sufficient to reach ceiling detection performance 

(Figure 3.3). This is in contrast to the much longer buildup times reported in 

streaming (~ 2000ms; Anstis and Saida, 1985; Micheyl et al., 2007b; 

Pressnitzer et al., 2008) and IM experiments (> 2s; Gutschalk et al., 2008) 

attributed to prolonged accumulation of sensory evidence, possibly 

requiring top-down mechanisms (Denham and Winkler, 2006). The shorter 

buildup times observed for SFG signals suggest that segregation may rely 

on partially different mechanisms from those that mediate streaming (Sheft 
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and Yost, 2008). All of these features make the SFG stimulus an interesting 

complement to streaming signals, with which to study pre-attentive auditory 

scene analysis. 

The SFG stimulus represents a significant advantage over related IM 

stimuli that also consist of a number of components over a wide frequency 

range. However, the IM stimuli usually feature a band-stop (“protective”) 

region surrounding the target tone to reduce (energetic) masking by the 

masker tones. Thus, the target channel will be excited but the neighboring 

channels will not be activated, and this could potentially provide a cue to the 

presence of a target in that frequency channel. Indeed, it has been shown 

that detection of targets in IM stimuli varies as a function of the width of the 

spectral protective region (Kidd et al., 1994; Micheyl et al., 2007b). 

Gutschalk and colleagues (2008) showed that the probability of correctly 

identifying the target within such signals increases with time, with d’ ~2 

achieved after several seconds of stimulation. 

On the other hand, target detection in the SFG stimuli was found to be 

quick with minimal training (Experiment 1). These data also reveal the 

sensitivity of figure-detection to the underlying spectrotemporal 

characteristics, i.e., the coherence and duration of the figure. Performance 

increased monotonically with increasing number of components that 

comprised the figure as well as the duration of the figure. The SFG stimulus 

thus provides a convenient handle to assess the relative effects of spectral 

and temporal features by manipulating the coherence and the duration of the 

figure respectively.  
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Experiment 2 required more sensitive figure-ground discrimination 

abilities: out of three stimuli, listeners were required to identify the signal 

with an “odd” figure whilst the other two figures were identical. For a fixed 

coherence value (6 components), it was found that discrimination ability 

increased with the duration of the figure and listeners achieved significantly 

above-chance performance for a duration of 8 and 12 chords. These results 

suggest that the listeners were able to distinguish the figures as “perceptual 

objects” on the basis of high-level mechanisms that did not depend on 

differences in frequency or temporal modulation cues. Thus, target detection 

in the SFG stimulus truly represents a figure-ground discrimination task and 

not a simple feature discrimination task. 

Experiments 3-6 examined discrimination abilities in the presence of a 

number of manipulations that modulated the temporal or spectral properties 

of the figure. It was found that the mechanism involved scales in time, in 

that detection depends on the number of components rather than their 

absolute duration (Experiment 3). Here, although the duration of each chord 

was reduced by half to 25ms (from 50ms chord length in experiment 1), 

there was no significant difference in performance. This chord presentation 

rate corresponds to 40Hz which is at the upper limits of temporal phase-

locking values observed in the auditory cortex (Miller et al., 2002). It 

remains to be investigated, however, if figure-detection shows the same 

insensitivity to higher rates of presentation.  

Experiment 4 involved a spectral perturbation where the slope of the 

figure components was manipulated. Instead of being linear and regularly 
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repeating across chords, the figures in this experiment comprised 

components that belonged to successively higher frequencies. Thus, the 

figure patterns formed linear (upward) ramps whose slope was varied in two 

separate experiments: the successive frequency steps were equal to 2/24
th

 

and 5/24
th

 of an octave in experiments 4a and 4b respectively. Here, the 

figure-detection abilities were significantly impaired in comparison to 

detection of repeating figures in experiment 1 suggesting that the underlying 

mechanisms may be sensitive to the spectral shape of the patterns to be 

segregated. Although significantly worse performance was observed in 

comparison to experiment 1, the behaviour was still well above-chance 

suggesting that such patterns could still be reliably detected.  

Results from experiment 5 with presentation of isolated figure 

components without any preceding or succeeding chords demonstrated rapid 

figure-detection abilities. Here, the duration of the stimulus was equal to the 

duration of the figure (ranging from 200 to 350ms) and similar performance 

to that in experiment 1 was observed. This suggests that the presence of the 

preceding stimulus chords which could possibly offer a predictive 

contextual cue is not crucial to segregation. These results point to the 

existence of a highly robust segregation mechanism that can operate over 

rather fast time scales.  

Experiments 6a and 6b demonstrated the robustness of the mechanism 

to another type of spectrotemporal perturbation. Successive stimulus chords 

were interleaved with broadband white noise whose intensity was much 

higher than the SFG stimulus chords. In experiment 6a, the duration of the 
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noise was 50ms while it was gradually increased in a set of three following 

experiments from 100ms up to 500ms. The data obtained in experiment 6a 

revealed no significant difference in performance compared to experiment 1 

suggesting that the insertion of noise had no major effect on discrimination. 

This suggests that the mechanism may be able to capture the temporal 

variation in the figure across noise segments and reject these as belonging to 

another (background) source. Subsequent experiments with longer duration 

of the intervening noise bursts were designed to explore the temporal limits 

of integration of such a high-level segregation mechanism. Even at the 

highest duration tested (500ms), performance was still found to be above-

chance (d’ ~1). 

Overall, these set of psychophysical experiments point to the existence 

of a higher-order mechanism for sequential grouping that is clearly distinct 

from that proposed in the case of simple sequences of alternating tones 

(Fishman et al., 2001; Micheyl et al., 2007a). These results also advocate the 

use of complex signals such as the SFG stimulus has allowed a better 

understanding of the bases for segregation in realistic simulations of real-

world sound scenes. 
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Chapter 4. TEMPORAL COHERENCE MODELING  

 

Summary 

 In this study, the mechanistic bases of segregation in the stochastic 

figure-ground signals are examined. A number of features make the SFG 

stimulus different from the commonly used narrowband and temporally 

non-overlapping stimuli such as streaming sequences that have inspired a 

number of prominent models of auditory segregation. The broadband SFG 

stimulus, on the other hand contains overlapping frequency components that 

vary from one moment to another and figure-detection depends on 

integration over both frequency and time. The present models of stream 

segregation are not designed to explain segregation in such stochastic 

stimuli, thus necessitating the need for a novel conceptual framework for 

more complex signals. The temporal coherence model of auditory scene 

analysis (Shamma et al., 2011) which posits that temporally correlated 

elements bind together to form a single stream provides a potential solution. 

The SFG stimuli used in the behavioural experiments reported in chapter 3 

were fed to the model and the resultant temporal coherence matrices were 

analyzed vis-à-vis the behavioural response patterns. A strong qualitative 

correspondence was found between the model simulations and behaviour 

thus supporting a role for temporal coherence as an organizational principle 

in auditory scene analysis. 
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4.1 Introduction 

Natural sounds in the environment comprise of dynamic signals with 

temporally structured characteristics, i.e., they fluctuate at specific temporal 

rates. As a result, the salience of acoustic attributes of a source also varies 

similarly, be it pitch, intensity or location. Different sources are thus 

characterized with different temporal patterns of fluctuations that may serve 

as a cue to distinguish between them. This is related to the Gestalt principle 

of common fate, i.e., sounds that start and stop together belong to the same 

source. This is apparent in an orchestra, where a heterogeneous group of 

musical instruments is perceived as a single source due to the temporal 

correlations between the individual sources of music. Bregman uses the 

term ‘sonic objects’ to refer to groupings such as choirs or orchestras. 

Standard models of sound segregation, however, propose that 

separation in “feature space” is essential for segregation (Fishman et al., 

2001; Micheyl et al., 2005, 2007a; Fishman and Steinschneider, 2010a). 

Based on neurophysiological evidence, these models suggest that spatially 

segregated activation of brain areas that encode particular features such as 

pitch or intensity forms the basis of segregation. This has been suggested in 

a range of animal and human investigations of auditory streaming (Fishman 

and Steinschneider, 2010a; Snyder et al., 2012; Moore et al., 2012; Denham 

and Winkler, 2013). 

A recent model of auditory scene analysis challenges these standard 

models and postulates that “temporal coherence” between sound tokens is 

essential for perceptual organization of the auditory environment (Shamma 
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et al., 2011). The model asserts that any sequence of temporally correlated 

acoustic features will bind together as a perceptual sound object and the lack 

of such temporal coherence provides the basis for segregation between two 

sound signals. This was demonstrated in the case of streaming signals which 

usually stream apart when the two constituent tones are well separated along 

the frequency dimension. However, when the two tones were made 

synchronous or temporally correlated, streaming was not observed as the 

two tones group together to form a complex that is perceived as a single 

stream even at large frequency separations (Elhilali et al., 2009a). Neural 

responses from ferret primary auditory cortex however did not show any 

difference between synchronous or alternating streaming signals, even 

though the two signals produced different perceptual reports (Elhilali et al., 

2009a). These results present a convincing case against tonotopic separation 

as an essential correlate of stream segregation and highlight the importance 

of the temporal dimension. Recently, Micheyl and colleagues (2013a, b) 

further demonstrated that synchrony limits listeners’ ability to perceive 

separate streams with reduced probability of segregated perceptual reports 

for synchronous compared to alternating tone sequences.  

The potential use of temporal correlations as a cue for perceptual 

segmentation has been shown previously in a model of the auditory system 

(von der Marlsburg and Schreiner, 1986) where segregation was found to be 

dependent on the synchronous onset of the stimulus occurring independently 

in two input signals, leading to rapid and persistent decoupling of two 

coherent sets of neurons.  
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Figure 4.1: Visual figure-ground discrimination.  

(Upper) Visual displays (pixel images) of oriented bars are shown.  

(Lower) Direction of motion of the component bars is indicated by arrows; to help 

the reader, coherently moving ensembles of bars are enclosed by a stippled 

border. The stimuli consist of: a figure (diamond) coherently moving to the right and 

a background composed of bars moving in randomly selected directions (A); the 

same figure moving to the right and a coherent background moving to the left (B); 

two identical and overlapping, but differently moving figures (diamonds) (C). Figure 

reproduced from Sporns et al., 1991. 
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Temporal structure is not only important for auditory scene analysis; it 

is also a primary factor governing visual segmentation (Blake and Lee, 

2005). Edelman and colleagues proposed that neurons responding to a 

particular object will be temporally correlated amongst themselves whilst 

being uncorrelated with neurons responding to other objects or to the 

background (Edelman, 1978; von der Malsburg, 1981). Sporns and 

coworkers (1991) developed a computational model to account for figure-

ground segregation in visual scenes where a figure was defined on the basis 

of coherent motion of oriented bars as shown in figure 4.1. Based on 

Edelman’s temporal correlation framework, Sporns et al. (1991) showed 

that the responses of the model were able to group elements corresponding 

to a coherent figure and segregate them from the background or another 

figure. 

These considerations strongly suggest a role for temporal structure in 

the perceptual analysis of visual and acoustic environments. The SFG 

stimulus presented in chapter 1 represents one such complex signal that is 

conceptually similar to the visual coherent dot motion stimulus (see Figure 

1.2; Shadlen and Newsome, 1996).  The SFG signal consists of a series of 

chords with random pure tone components that vary from one chord to 

another. The perceptual target, i.e., the figure is defined on the basis of a 

certain number of frequency components that repeat synchronously over a 

certain number of chords, whilst the remaining channels contain random 

frequency components and are temporally uncorrelated. The principle on 

which the coherent figure (the constituent frequency components start and 
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stop at the same time) is defined suggests that the temporal coherence model 

(Shamma et al., 2011) may underlie segregation in the case of the complex 

SFG stimulus where previous models based on the streaming signals fall 

short (Fishman et al., 2001; Micheyl et al., 2005, 2007a). 

In this study, the temporal coherence modeling framework is applied 

in the case of the SFG stimuli and it is examined whether temporal 

coherence between the frequency channels that comprise a figure 

corresponds with behavioural results from the experiments reported in 

chapter 1. 

4.2 Temporal coherence model 

The temporal coherence model is a spatiotemporal model which 

proposes that auditory stream segregation requires both separation in feature 

space and temporal incoherence between the responses of the corresponding 

channels. The model predicts that if the activity of auditory channels is 

positively correlated over time, then they define a single stream irrespective 

of the spatial distribution of the responses. On the other hand, channels that 

are uncorrelated or anti-correlated are assigned to different streams. This 

theory provides a general framework that can be applied to auditory 

dimensions other than frequency, such as intensity, spatial location and 

temporal modulations. The model, however, does not reject the importance 

of frequency selectivity (Fishman et al., 2001, 2004; Bee and Klump, 2004, 

2005; Micheyl et al., 2005, 2007a). Sharp frequency selectivity is necessary 

for segregation: if the frequency tuning is broader than the frequency 

separation between two tones then this will always result in the perception 
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of a single stream. Thus, frequency separation is an important factor for 

segregation but not sufficient according to the coherence model.  

The temporal coherence model consists of two distinct stages as 

shown in figure 4.2. The first stage analyzes the auditory spectrogram of the 

acoustic input and performs temporal integration through a bank of 

bandpass filters that are tuned to different physiologically plausible 

parameters that capture the rich variety of spectrotemporal receptive fields 

(STRFs) found in PAC (Chi et al., 2005; Elhilali and Shamma, 2008; 

Elhilali et al., 2009a, Shamma et al., 2011). STRFs summarize the response 

of a neuron to acoustic input and can be either broadly or sharply tuned. 

Auditory cortex contains a diverse range of STRFs that are tuned to a 

specific range of spectral resolutions (or “scales”; 0.125 to 8 cycles per 

octave) and a limited range of temporal modulations (or “rates”; 2-32 Hz). 
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Figure 4.2:  A schematic of the temporal coherence model.  

From left to right: Multiple sound sources constitute an auditory scene, which is initially 

analysed through a feature analysis stage. This stage consists of a cochlear frequency 

analysis followed by arrays of feature-selective neurons that create a multidimensional 

representation along different feature axes. The figure depicts timbre, pitch and spatial 

location channels. Note that for computational convenience and illustration purposes, 

these feature maps are shown with ordered axes when in fact such orderly 

representations are neither known nor are essential for the model. The outcome of this 

analysis is a rich set of cortical responses that explicitly represent the different sound 

features, as well as their timing relationships. The second stage of the model performs 

coherence analysis by correlating the temporal outputs of the different feature-selective 

neurons and arranging them based on their degree of coherence, hence giving rise to 

distinct perceptual streams. Complementing this feed-forward bottom-up view are top-

down processes of selective attention that operate by modulating the selectivity of 

cortical neurons. This feature-based selective attention translates onto object-based 

attentional mechanisms by virtue of the fact that selected features are coherent with 

other features that are part of the same stream. Figure reproduced from Shamma et al., 

2011. 
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The next level of the model incorporates a temporal coherence 

analysis stage which computes a “windowed” correlation between each pair 

of channels by taking the product of the filter outputs corresponding to the 

different channels. The coincidence analysis is performed over a range of 

time scales of the order of tens to hundreds of milliseconds that is consistent 

with experimental findings from cortical recordings (Kowalski et al., 1996; 

Miller et al., 2002). A dynamic coherence matrix which consists of the 

cross-correlation values as a function of time is obtained that represents the 

output of the model. The diagonal entries represent the mean power in the 

input channels and do not predict perceptual representation. The off-

diagonal elements of the matrix indicate the presence (or absence) of 

coherence across different channels, and are predictive of the perceptual 

representation of the input stimulus.  

4.3 Temporal coherence analysis of SFG stimuli 

The temporal coherence model was run for a range of temporal 

modulation rates: 2.5, 5, 10 and 20Hz for experiments 1, 4, 5, and 6a and 5 

respectively, and 10, 20 and 40Hz for experiment 3 (see section 3.2.3).  

Additionally, a rate of 3.33Hz corresponding to the rate of presentation of 

300ms white noise segments was used in experiment 6b. These rates cover 

the range of physiological temporal modulation rates observed in the 

auditory cortex (Miller et al., 2002). A single spectral resolution scale of 8 

cycles per octave (corresponding to the bandwidth of streaming; 4 cycles 

per octave for experiment 4b where larger frequency steps are required to 

extract a ramped figure) was used.  
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Figure 4.3: Temporal coherence modeling of the basic SFG stimulus.  

The protocol for temporal coherence analysis is demonstrated here for experiment 

5. The procedure was identical for modeling the other experiments. A stimulus 

containing a figure (here with coherence = 4) as indicated by the arrows (4.3A) and 

another, background only (figure absent) stimulus (4.3B) was applied as input to 

the temporal coherence model.  The model performs multidimensional feature 

analysis at the level of the auditory cortex followed by temporal coherence analysis 

which generates a coherence matrix for each stimulus as shown in figures 4.3C 

and 4.3D respectively. The coherence matrix for the stimulus with figure present 

contains significantly higher cross-correlation values (off the diagonal; enclosed in 

white square) between the channels comprising repeating frequencies as indicated 

by the two orthogonal sets of white arrows in figure 4.3C. A magnified plot of the 

coherence matrix for the figure stimulus is shown in figure 4.3E where the cross-

correlation peaks are highlighted in white boxes. The strength of the cross-

correlation is indicated by the heat map next to each figure. The stimulus without a 

figure, i.e., which does not contain any repeating frequencies, does not contain 

significant cross-correlations. This process is repeated for 500 iterations (Niter) for 

all combinations of coherence and duration. The differences between these two 

coherence matrices were quantified by computing the maximum cross-correlation 

for each set of coherence matrices for the figure and the ground stimuli 

respectively. Temporal coherence was calculated as the difference between the 

average maxima for the figure and the ground stimuli respectively. The resultant 

model response is shown for each combination of coherence and duration in figure 

4.3F. 

 

 



205 

 

The analysis was conducted by entering the SFG stimulus for each 

experimental condition to the input stage of the model. For experiments 1 

and 3, the entire stimulus was fed to the model input and for the remaining 

experiments a stimulus without the pre- and post-figure chords was entered. 

This was based on the prediction that the background chords before and 

after the figure onset contribute little to the cross-correlation matrix unlike 

the chords comprising the figure that contribute prominently to the net 

temporal coherence. The simulations were performed separately for the 

stimuli containing a figure and without a figure and repeated across five 

hundred iterations. To establish differences between the resultant coherence 

matrices, the maximum value of the cross-correlation across all time points 

was computed. This spectral decomposition helps to examine whether 

channels are correlated with each other (whereby the channels with 

repeating figure components could possibly be bound together as one object, 

or the “figure”), and not significantly correlated with each other (the 

channels with random correlation between channels may be perceived as 

belonging to the background). The difference in the average values of the 

maxima between the figure and the ground stimuli was calculated as the 

model response and plotted like the psychophysical curves (see figure 3.5) 

to obtain the model responses (see figures 4.3 and 4.4). 

4.4 Results 

It is difficult to account for listeners’ performance in Experiments 1 

and 2 based on the standard, adaptation-based models proposed in the 

context of the streaming paradigm (Hartmann and Johnson, 1991; Beauvois 
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and Meddis, 1991, 1996; Denham and McCabe, 1997; Fishman et al., 2001; 

Micheyl et al 2005, 2007a; Fishman and Steinschneider, 2010a). The figure 

and background in the SFG stimuli overlap in frequency space, thus 

challenging segregation based on activation of spatially distinct neuronal 

populations in PAC. Furthermore, the psychophysical data clearly indicate 

that performance strongly depends on the number of simultaneously 

repeating frequency components, suggesting a mechanism that is able to 

integrate across widely spaced frequency channels, an element missing in 

previous models based on streaming. Instead, the behavioural results are 

consistent with a temporal coherence model of segregation (Shamma et al., 

2011). 

The temporal coherence model is based on the idea that a perceptual 

“stream” emerges when a group of (frequency) channels are coherently 

activated against the backdrop of other uncorrelated channels (Shamma et 

al, 2011). In the SFG stimuli, the “figure” (defined by the correlated tones) 

perceptually stands out against a background of random uncorrelated tones. 

The temporal coherence model postulates that the figure becomes 

progressively more salient with more correlated tones in the different 

frequency channels. To measure this coherence, a correlation matrix across 

all channels of the spectrogram was computed. In principle, the correlation 

between the activations of any two channels at time t should be computed 

over a certain time window in the past, of a duration that is commensurate 

with the rates of tone presentations in the channels; this may range roughly 

between 2 and 40 Hz depending on the experimental session. Consequently, 
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to estimate the perceptual saliency of the figure segment in our stimuli, the 

correlation matrix was simultaneously computed for a range of temporal 

rates, and the largest correlation values are reported. 

The computations incorporated a spectrotemporal analysis postulated 

to take place in the auditory cortex (Chi et al., 2005; Elhilali and Shamma, 

2008). Specifically, temporal modulations in the spectrogram channels were 

first analyzed with a range of constant-Q modulation filters centred at rates 

ranging from 2 to 40 Hz (computing in effect a wavelet transform for each 

channel). The correlation matrix at each rate is then defined as the product 

of all channel pairs derived from the same rate filters. The maximum 

correlation values from each matrix were then averaged and was assumed to 

reflect the coherence of the activity in the spectrogram channels, and hence 

the saliency of the figure interval. Note that, as expected, the rate at which 

the maximum correlations occurred for the different experiments (reported 

in figures 3.5 and 4.4) approximately matched the rate of the tones presented 

during the figure interval.  

Experiment 1 

Figure 4.3 illustrates the modeling procedure and results for stimuli 

from Experiment 1 (see methods for details of the model). The model 

successfully accounted for the behavioural data in that, an average cross-

correlation based measure was able to systematically distinguish “figure-

present” from “figure-absent” (or background) stimuli in a manner that 

mirrored the behavioural responses. The model’s measure of temporal 
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coherence showed a similar profile and increased with the coherence and the 

duration of the figure for the different experimental conditions (figure 4.4).  

Experiment 3  

Model predictions for experiment 3 that presented the SFG chords at 

a faster rate of 40 Hz (chord length was reduced to 25ms) were consistent 

with the experimental findings (figure 4.4A). Thus, correlations across the 

spectrogram channels remained significant, but now occurred at higher rates 

than in experiment 1 (40 Hz versus 20 Hz), reflecting the faster rate of tone 

presentations in the figure. 
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Figure 4.4: Temporal coherence modeling results for other SFG stimuli.  

The output of the temporal coherence modeling procedure is shown for the 

remaining psychophysical experiments:  

(A) Experiment 2 with 25ms chords modeled at a rate of 40 Hz;  

(B, C) Experiments 4a and 4b with ramped figures with step size of 2 and 5 

respectively modeled at a rate of 10 Hz;  

(D) Experiment 5 with isolated 50ms chords modeled at a rate of 20Hz;  

(E, F) Experiments 6a and 6b with chords interrupted by noise of duration 50ms 

and 300ms modeled at 20 and 3.33 Hz respectively. 
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Experiment 4 

Experiment 4 consisted of SFG stimuli where the figure was defined 

on the basis of linear ramps, i.e., the successive channels that comprised the 

figure were not identical but rather increased in frequency in steps of 2/24th 

and 5/24
th

 of an octave in two separate experiments. As with previous 

experiments, there were significant correlations among the channels 

predicting the saliency of the ramped figures. However, the optimal rate at 

which the correlations occurred here was slightly lower (at 10Hz; see 

figures 4.4B and 4.4C) than that observed in experiment 1 (20 Hz), perhaps 

because two 50ms chords are integrated as a single unit to define the ramp. 

Experiment 5 

Here, the basic SFG stimulus from experiment 1 was manipulated 

such that the chords that comprised the pre-figure and post-figure segments 

were removed and the figures were presented in isolation. Modeling for this 

experiment replicated the results of experiment 1 in that the correlations 

increased with the coherence and duration of the figure and showed 

maximum response at 20Hz (see figure 4.4D), corresponding to the rate of 

presentation of the chords comprising the figure.  

Experiment 6 

Experiment 6 measured figure-detection performance in a version of 

the SFG stimulus that comprised an alternating sequence of SFG chords and 

loud masking white noise. Model predictions in this experiment (see figures 

4.4E) are broadly consistent with the findings in that detection became 
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easier with more coherent tones, and with longer figure intervals. The 

reason is simply because the noise weakens but does not eliminate the 

correlation amongst the tones, at least when computed at slower rates. 

Furthermore, the temporal correlations were found to be modulated even in 

experiment 6b where these are measured over longer windows (or slower 

rates - e.g. 3.33 Hz as in figure 4.4F). 

4.5 Discussion 

Models of auditory scene analysis have tried to explain segregation on 

the basis of peripheral channeling (Hartmann and Johnson, 1991; Beauvois 

and Meddis, 1991, 1996; Denham and McCabe, 1997); physiological 

principles of frequency selectivity, forward masking, and adaptation at the 

level of the auditory cortex that results in spatially segregated activation of 

neuronal ensembles (Fishman et al., 2001; Micheyl et al., 2005, 2007a; 

Fishman and Steinschneider, 2010a), and more recently on the basis of 

predictive coding mechanisms (Denham and Winkler, 2006; Winkler et al., 

2009; Mill et al., 2013). Although these theories propound different 

principles to account for segregation, they have one common feature: all 

theories are based on a simple pattern of alternating tones that stream apart 

into separate perceptual streams following an initial percept of a single 

stream (van Noorden, 1975; Bregman, 1990; Moore et al., 2002, 2012). The 

proposed “central” models of segregation that invoke cortical mechanisms 

successfully account for several features of the streaming paradigm such as 

the buildup of streaming, and switching between perceptual states. 
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However, it is not known if these models can predict segregation in more 

complex signals other than streaming.  

Frequency selectivity and tonotopic mapping form a strong element of 

these models. Shamma and colleagues (2011) proposed a new model of 

segregation that credits frequency selectivity as a significant factor but gives 

primary importance to “temporal coherence”, i.e., the temporal relationship 

between sound tokens. The following sections describe the various aspects 

of the temporal coherence model. 

4.5.1 Segregation based on temporal coherence  

The temporal coherence model proposes that segregation is achieved 

not only on the basis of separation in feature-space but rather by the 

temporal relationship between different elements in the scene, such that 

temporally coherent elements are bound together, whilst temporally 

incoherent channels with independent fluctuation profiles are allocated to 

separate sources (Shamma et al., 2011). Specifically, the model involves 

two processing stages: firstly, a feature analysis stage that performs 

multidimensional feature analysis by distinct populations of neurons in the 

auditory cortex that are tuned to a range of physiologically relevant 

temporal modulation rates and spectral resolution scales (Chi et al., 2005; 

Elhilali and Shamma, 2008). Auditory features such as pitch, timbre and 

loudness are analyzed at this stage, and the output is fed to a second stage 

that computes temporal coherence.  
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Elhilali and colleagues (2009a) first demonstrated the relevance of 

temporal coherence for auditory streaming. In a psychophysical experiment, 

they showed that human listeners are more likely to report a percept of one 

stream when the tones of the streaming signal are made synchronous. This 

phenomenon was observed even if the frequency separation between the two 

tones was more than an octave. To investigate the neural bases of these 

findings, they performed recordings from ferret auditory cortex in response 

to the alternating and synchronous sequence of tones. They observed that 

the cortical responses to the two types of sequences were equally spatially 

segregated, irrespective of their temporal relationship and the differences in 

the perception of the two sequences. These results emphasize the 

fundamental importance of the temporal dimension in the perceptual 

organization of sound, and suggest that spatially segregated response 

patterns in the auditory cortex are not sufficient to explain streaming (also 

see Shamma and Micheyl, 2010; Shamma et al., 2011; Shamma et al., 

2013). 

The temporal coherence model has also been applied to model the 

perceptual organization of sound in signals more complex than streaming, 

such as music (Pressnitzer et al., 2011). For pieces of music characterized 

by a number of instruments playing at the same temporal rhythm, the 

predictions of the temporal coherence model were consistent with the 

perception of a single rich harmony. On the other hand, for a musical 

excerpt with several instruments playing independent melodies at distinct 

levels of rhythm, the coherence matrix showed off-diagonal activation 
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patterns that suggests the presence of incoherent sources (Pressnitzer et al., 

2011). 

In the present study, the stimulus consisted of coherent figures with a 

few temporally correlated channels in the presence of a number of channels 

with random fluctuation patterns that comprised the background. The results 

of the temporal coherence analysis for the SFG stimuli (Figures 4.3 and 4.4) 

demonstrate that temporal coherence varies significantly as a function of the 

coherence and the duration of the figure. Thus, temporal coherence is 

sensitive to the salience of the figure in a manner that is consistent with the 

behavioural results. These results, however, do not offer conclusive 

evidence in favour of the temporal coherence model but are strongly 

supportive of such a mechanism. The data indicate temporal coherence to be 

a correlate of stimulus salience by which the brain picks out the most salient 

sounds in complex scenes: a process that may not be computed by dedicated 

structures but could be achieved by binding across distributed feature 

channels. Similar accounts of binding in vision based on temporal structure 

also exist (Fahle, 1993; Alais et al., 1998; Treisman, 1999; Blake and Lee, 

2005). 

4.5.2 Neural bases of temporal coherence analysis 

The brain mechanisms and substrates of temporal coherence analysis 

are yet to be determined. It is possible that temporal coherence may be 

computed by cells that show strong sensitivity to features across distant 

channels (e.g. that encode pitch, intensity, or spatial location). Alternatively, 

neurons that can multiplex information from distinct channels could encode 
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coherence (Elhilali et al., 2009a; Shamma et al., 2011, 2013). Elhilali and 

colleagues (2009a) sought such cells in the primary auditory cortex of the 

ferret but were unable to demonstrate any. In their study, they observed 

spatially segregated activation of neurons in the cortex for synchronous tone 

sequences with high temporal coherence, which was similar to the neuronal 

response patterns for the temporally uncorrelated alternating tone sequences. 

These data suggest that the locus of temporal coherence computations may 

be outside the auditory cortex. The behavioural and modeling data are 

indicative of a highly robust mechanism that is sensitive to correlations 

across frequency and time. Together, these lines of evidence suggest that a 

higher-order region in auditory-related areas or beyond that receives inputs 

from the cortex may be responsible for encoding coherence. Single-unit 

activity as examined by Elhilali and co-workers (2009a) may not be the 

ideal technique to answer this question and measurement of neural ensemble 

activity may shed some light on the problem. In humans, techniques like 

EEG and MEG with high temporal resolution could highlight coordinated 

brain activity across distinct channels that represent temporal coherence.  

An important consideration relates to the involvement of oscillatory 

mechanisms such as gamma oscillations that have been implicated in object 

binding (Gray et al., 1989; Tallon-Baudry and Bertrand, 1999). In their 

original study, Elhilali and colleagues (2009a) suggest that coherence is a 

stimulus-driven phenomenon that may not be dependent on oscillatory 

mechanisms that help synchronize and bind activity across distant cortical 

sites. In other words, response to coherence might be expected to be time 
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locked (evoked) rather than induced at the point where the initial 

mechanism occurs. Another important feature of the temporal coherence 

model is the role of selective attention as illustrated in figure 4.2 which is 

predicted to operate at the output of the coherence analysis stage. The role 

of attention is described in greater detail in the following section. 

4.5.3 Attention and temporal coherence 

Attention is an important feature in auditory scene analysis and has 

been shown to be involved in selection of streams and the perceptual 

(schema-based) organization of the auditory scene (Bregman, 1990; Fritz et 

al., 2007; Snyder et al., 2012). The role of attention in stream formation, 

however, is considered to be modulatory. It can influence stream formation 

by sharpening the responses to different features, thus altering the neural 

representation. This has been demonstrated in several neurophysiological 

studies that showed task- and attention-dependent modulation of cortical 

STRFs (Fritz et al., 2003, 2005, 2010; David et al., 2012). Another way of 

influencing streaming is by modulating the temporal coherence of neuronal 

ensembles (Elhilali et al., 2009b; Shamma et al., 2011). In an MEG study, 

Elhilali and colleagues used an IM paradigm where the target consisted of a 

regularly repeating tone and found that responses were enhanced 

specifically at the attended rate. This resulted in enhanced phase coherence 

between neuronal populations that may help facilitate temporal coherence 

analysis (Shamma et al., 2011). Attention may also influence temporal 

coherence by acting on specific features which may serve as an anchor and 

bind other acoustic attributes of the same source that are temporally 
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correlated with that feature. For instance, attending to the spatial location of 

a speaker may provide a cue to bind other aspects such as pitch and timbre. 

Along the same lines, cueing a particular feature may also aid attentional 

selection of that feature which may enhance subsequent coherence analysis. 

In the case of the SFG stimuli, pre-cueing a frequency component that 

subsequently forms one of the coherent channels of the “figure” may 

improve temporal binding and consequently target-detection behaviour. 

 In a recent study, Shamma et al. (2013) measured cortical STRFs in 

ferret auditory cortex in the passive and behaving states. The stimuli 

consisted of a pair of tones that were either alternating or synchronous and 

transitioned to a random cloud of tones that enabled STRF measurements. In 

the passive state, the average STRFs were similar for both the sequences of 

tones. However, when the animal began to attend globally to the stimuli, a 

segregated pattern of responses was observed for the alternating and 

synchronous tone sequences. The STRFs for the alternating tones were 

significantly suppressed below the passive level, whilst the STRFs for the 

synchronous tones were enhanced. The latter was attributed to mutually 

positive interactions between neurons whilst inhibitory interactions decrease 

the responsiveness during the alternating tone presentation. Thus, temporal 

coherence and attention interact to enhance the perceptual representation of 

foreground streams and diminish the representation of background streams. 
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Chapter 5. FUNCTIONAL MAGNETIC RESONANCE IMAGING  

 

Summary 

In this study, functional MRI was used to investigate the neural 

substrates that are involved in the processing of salient figures in the 

stochastic figure-ground stimulus. The behavioural results and modeling 

simulations suggest the existence of a segregation mechanism that is highly 

sensitive to correlations in frequency and time. Such a mechanism may 

possibly be based at the level of the auditory cortex or beyond. Here, fMRI 

was used in a passive listening paradigm to examine the brain bases of 

stimulus-driven segregation in the SFG stimulus. Listeners were required to 

perform an irrelevant task while listening to a continuous stream of the SFG 

stimulus with brief figures embedded in the sequence. The coherence and 

duration of the figures was parameterized to investigate brain areas that are 

sensitive to the pop-out of the figures. Results demonstrate significant 

activations in the intraparietal sulcus (IPS) and the superior temporal sulcus 

related to bottom-up figure-ground decomposition. No significant activation 

was observed in the primary auditory cortex. These results are consistent 

with accumulating evidence suggesting a role for the IPS in structuring 

sensory input and perceptual organization of the auditory scene. 
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5.1 Introduction 

Auditory figure-ground segregation refers to listeners’ ability to 

extract a particular sound of interest from a background of other 

simultaneous sounds, for instance, the sound produced by the drums in an 

orchestra. Auditory segregation involves a set of processes that include 

grouping of simultaneous figure components from across the spectral array 

(Micheyl and Oxenham, 2010), grouping of sequential figure components 

over time (Moore and Gockel, 2002), and extraction of the grouped 

components from the background (de Cheveigné, 2001). 

Several studies have examined the neuronal mechanisms underlying 

these processes based on signals such as streaming, informational masking 

stimuli, and oddball stimuli amongst others (see section 1.4). Based on such 

investigations in both human and animal experiments, a distributed network 

of areas along the auditory pathway has been implicated in segregation. 

Peripheral channeling models of segregation (Hartmann and Johnson, 1991; 

Beauvois and Meddis, 1991, 1996; Denham and McCabe, 1997) received 

physiological support from a streaming experiment in guinea pigs 

(Pressnitzer et al., 2008) where neuronal activity in the cochlear nucleus 

reflected sensitivity to frequency separation and presentation rate as 

demonstrated in human psychophysical experiments (van Noorden, 1975; 

Bregman, 1990). Further up the ascending pathway, the medial geniculate 

body (MGB) in the thalamus was also implicated in an fMRI experiment 

that examined the role of perceptual reversals during streaming (Kondo and 

Kashino, 2009, 2012). They found activation of the MGB specifically 
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during switching from a non-predominant to a predominant percept. The 

primary auditory cortex has been implicated in a number of studies in 

human (Deike et al., 2004, 2010; Bidet-Caulet et al., 2007; Wilson et al., 

2007; Dykstra et al., 2011) and animal (Fishman et al., 2001, 2004; Bee and 

Klump, 2004, 2005; Micheyl et al., 2005) experiments. The auditory cortical 

responses demonstrate sensitivity to parameters such as frequency 

separation and tone presentation rate that determine the perceptual 

representation of streaming sequences. Non-primary auditory cortex 

including areas in the planum temporale (PT) have been shown to be 

involved in mediating both primitive and cognitive aspects of segregation 

including attentional modulation (Gutschalk et al., 2005; Alain, 2007; 

Schadwinkel and Gutschalk, 2010; Ding and Simon, 2012; Mesgarani and 

Chang, 2012; Zion-Golumbic et al., 2013a). 

A more striking result was reported by Cusack (2005) who did not 

observe any activity in the primary auditory cortex related to the perceptual 

representation of two vs. one stream in an fMRI experiment. Instead, he 

found that activity in the intraparietal sulcus (IPS) most strongly 

corresponded to this contrast and suggested that it may be involved in 

attentional switching between streams in a bistable configuration. Hill et al., 

(2011) provided further evidence that the IPS is involved in mediating 

perceptual representation during streaming in another fMRI study of 

streaming.  

However, a limiting factor in understanding the neural computations 

occurring at these different levels and relating existing experimental results 
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to listeners’ experience in natural environments is that the stimuli used thus 

far have been rather basic, lacking the spectrotemporal richness of natural 

sounds. Most studies of segregation have used relatively simple stimuli 

consisting of sequentially presented, regularly alternating tones (Shamma 

and Micheyl, 2010) or static harmonic sounds (Alain, 2007).  

 In this study, the SFG stimulus was used in an fMRI experiment to 

examine the brain areas that underlie segregation in this complex signal (see 

section 3.2.1 for stimulus details). Unlike previous signals, this stimulus is 

not confounded by figure and background signals that differ in low-level 

acoustic attributes, or by the use of a spectral ‘protective region’ around the 

figure. Here, at each point in time, the figure and background are 

indistinguishable and the only way to extract the figure is by integrating 

over time (over consecutive chords) and frequency (identifying the 

components that change together). Behavioural results (see section 3.3) 

demonstrate that listeners are remarkably sensitive to the emergence of such 

figures. In this passive fMRI paradigm, the salience of the figure was 

systematically varied by independently manipulating the number of 

repeating components and the number of repeats in order to investigate the 

neural bases of the emergence of an auditory object from a stochastic 

background as occurs during the automatic parsing of natural acoustic 

scenes. 
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5.2 Materials and methods 

5.2.1 Participants 

Fourteen participants (9 female; mean age = 27.4 years) with normal 

hearing and no history of neurological disorders took part in the fMRI 

experiment. None of these subjects participated in the psychophysics 

experiments reported in chapter 3. Experimental procedures were approved 

by the Institute of Neurology Ethics Committee (London, UK), and written 

informed consent was obtained from each participant. The data for one 

subject were excluded from analysis due to a technical problem. All 

listeners completed the passive listening block. A subset of seven 

participants (3 female; mean age = 28.8 years) also subsequently completed 

an ‘active detection’ block to assess performance on the figure-detection 

task in the scanner.  

5.2.2 Stimuli 

5.2.2.1 Passive listening block 

A key feature of the present experimental design is the brief duration 

of the figure. Whereas previous studies used relatively long, on-going 

figure-ground stimuli and, in many cases, instructed listeners to actively 

follow one of the components (Scheich et al., 1998; Cusack, 2005; 

Gutschalk et al., 2005, 2008; Wilson et al., 2007; Elhilali et al., 2009b), in 

this imaging experiment listeners were kept naïve to the nature of acoustic 

stimulation. They were presented with very short figure stimuli, embedded 

in an on-going random background. Figure duration (a maximum of 6 

repeating chords – 300ms) was determined on the basis of a behavioural 
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experiment to find an optimal value that produced reliable detection. Such 

an experimental design was used in order to tap the bottom-up, segregation 

mechanisms rather than subsequent processes related to selective attention. 

The stimuli were created in the same way as the psychophysical 

stimuli (see section 3.2.1) with the following differences: the results of the 

psychophysics experiments (see Figure 3.3) identified two parameters as the 

most informative to study the underlying brain mechanisms because 

performance on those conditions spanned the range from non-detectable to 

easily detectable: i) fixed coherence with four components and varied 

duration, and ii) fixed duration of four chords and varied coherence. The 

stimuli in the fMRI experiment thus consisted of signals with a fixed 

coherence level of four components with five duration levels (2-6) and 

signals with a fixed duration of four components with five coherence levels 

(1, 2, 4, 6, and, 8), resulting in nine stimulus conditions. Due to temporal 

resolution considerations related to the slow BOLD haemodynamics, and 

the need for a larger interval between events of interest, the duration of the 

signals was increased to 2750ms (as opposed to 2000ms in the 

psychophysical experiments), with the figure appearing between 1250-

1500ms (25-30 chords) post onset. 66% of these signals contained a brief 

figure. Additionally, a small proportion (15%) of decoy stimuli consisting of 

200ms white noise bursts (ramped on and off with 10ms cosine-squared 

ramps) were randomly interspersed between the SFG stimuli. Overall, 

listeners heard 40 repetitions of each of the nine different stimuli. 
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In order to avoid effects of transition between silence and sound, the 

stimuli were presented in succession without any gaps. The resulting 

continuous stream consisted of an on-going tonal background noise with 

occasional figures. This signal was intermittently interrupted by brief noise 

bursts which listeners were required to detect. Stimuli were presented via 

NordicNeuroLab electrostatic headphones at a sound pressure level of 85-

90dB. 

5.2.2.2 Active detection block 

An active detection block was used to assess listeners’ performance 

on the task in the presence of the scanner noise. Signals with a fixed 

coherence level of four components and five duration levels (2-6) and with a 

fixed duration level of four components with five coherence levels (1, 2, 4, 

6, and 8) were used. Listeners heard eight repetitions of each stimulus 

condition. The order of presentation of the different stimuli was randomized 

with an ISI between 500-1250 ms. After every eighth stimulus, the ISI was 

increased to 12 s (to allow an analysis of a sound vs. silence constrast). 

5.2.3 Procedure 

The experiment lasted two hours and consisted of a ‘passive 

listening’ block followed by an ‘active figure-detection’ block. Each block 

consisted of three runs of 10 minutes each. Participants completed both 

blocks in a single session; they were allowed a short rest between runs. In 

the ‘passive listening’ block, the listeners were kept naïve to the stimulus 

structure and the aims of the experiment: they were instructed to look at a 
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fixation cross and detect noise bursts using a button box. In the ‘active 

detection’ block, listeners were instructed to detect the figures that popped 

out of the random tonal noise (50% of the signals). Crucially, this task was 

explained to the participants before the start of the ‘active detection’ block 

to ensure that they were unaware of the existence of figures during the 

‘passive listening’ block. Pilot experiments did suggest that while the 

figures are readily detectable after a short practice, naïve listeners 

performing the decoy task remained unaware of their presence. 

Before beginning the task, subjects completed a short practice 

session (about 10 minutes) in the MRI scanner and received feedback. To 

facilitate learning, feedback was also provided during the session proper.  

5.2.4 Image acquisition 

Gradient weighted echo planar images (EPI) were acquired on a 3 

Tesla Siemens Allegra MRI scanner using a continuous imaging paradigm 

with the following parameters: 42 contiguous slices per volume; time to 

repeat (TR): 2520ms; time to echo (TE): 30ms; flip angle α: 90°; matrix 

size: 64 x 72; slice thickness: 2 mm with 1 mm gap between slices; echo 

spacing: 330μs; in-plane resolution: 3.0 x 3.0 mm
2
. Subjects completed 

three scanning sessions and a total of 510 volumes were acquired. Field 

maps were acquired for each subject with a double-echo gradient echo field 

map sequence (short TE = 10.00ms and long TE = 12.46ms) to correct for 

geometric distortions in the EPI due to magnetic field variations (Hutton et 

al., 2002, Cusack et al., 2003). A structural T1-weighted scan was also 

acquired after the functional scan (Deichmann et al., 2004). 
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5.2.5 Image analysis 

Imaging data were analyzed using Statistical Parametric Mapping 

software (SPM8; Wellcome Trust Centre for Neuroimaging, London, UK; 

see section 2.2.3). The first two volumes were rejected to control for 

saturation effects and the remaining volumes were realigned to the first 

volume and unwarped using the field maps. The realigned images were 

spatially normalized to stereotactic space (Friston et al., 1995a) and 

smoothed by an isotropic Gaussian kernel of 5 mm FWHM.  

 Statistical analysis was conducted using the general linear model 

(Friston et al., 1995b; see section 2.2.4). Onsets of trials with fixed 

coherence and fixed duration were orthogonalized and parametrically 

modulated by coherence and duration values respectively. These two 

conditions were modeled as conditions of interest and convolved with a 

hemodynamic boxcar response function. A high-pass filter with a cut-off 

frequency of 1/128 Hz was applied to remove low-frequency signal 

variations. 

A whole-brain random-effects model was used to account for within-

subject variance (Penny and Holmes, 2004). Each subject’s first-level 

contrast images were entered into second-level t-tests for the primary 

contrasts of interest – “effect of duration” and “effect of coherence”. 

Functional results are overlaid onto the group-average T1-weighted 

structural scan.  
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5.3 Results 

The aim of the fMRI analysis was to identify the brain areas whose 

activity increases parametrically with an increase in the corresponding 

changes in coherence (while keeping duration fixed) and duration (while 

keeping coherence fixed) respectively. 

  The primary purpose of the active detection block (presented after 

the passive listening block) was to ensure that subjects were indeed able to 

detect the figures despite the loud, interfering MRI scanner noise and to 

compare their performance to that obtained outside the scanner. Because of 

the differences in stimulus presentation between the passive and active 

blocks, as well as other perceptual factors such as attentional load and focus 

of attention, a comparison of the activation patterns in the two blocks is not 

straightforward.  

5.3.1 Psychophysics 

Figure 5.1 shows the figure-detection performance obtained in the 

scanner (‘active detection’ block) alongside the results from the behavioural 

study. Listeners performed worse in the scanner than in quiet conditions (a 

difference of about 20%). This may be due the interfering scanner noise as 

well as lack of sufficient practice. It was important to keep listeners naïve 

for the passive half of the fMRI study and instructions for the figure-

detection task were provided after the passive block, while listeners were 

already in the scanner. Moreover, as a consequence of the experimental 

design, listeners also encountered overall fewer ‘easy’ signals (those with a 
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fixed coherence of six and eight components and long duration) which could 

have contributed to some improvement with exposure.   

Crucially, the data illustrate that the figures are easily detectable 

even in a noisy scanner environment and that the parametric modulation 

produced linear response patterns. 
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Figure 5.1: Comparison of behavioural performance in the psychophysics 

and fMRI experiments.  

 

Behavioural performance on the figure detection task obtained in the scanner with 

continuous image acquisition (solid lines) presented along with data from the same 

stimuli obtained in quiet (dashed lines; see psychophysical study, Fig. 2). Hit rate is 

shown as a function of fixed coherence (4 components) and increasing duration (in 

red) and as a function of fixed duration (4 chords) and increasing coherence (in 

blue). The dashed line represents the mean false-positive rate. Error bars 

represent one SEM. 
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5.3.2 fMRI results 

The purpose of the passive listening block was to identify the brain 

areas whose activity is modulated as a function of the figure salience. A 

decoy task was used to ensure that subjects remain vigilant and attend to the 

sounds whilst distracting them from the stimulus of interest. Performance on 

the decoy task was at ceiling for all listeners. As the primary aim was to 

examine predominantly bottom-up segregation mechanisms, it was essential 

that listeners were naïve to existence of the figures. Indeed, when 

interrogated at the end of the block, none of the subjects reported hearing 

salient sounds pop out of the background.    

5.3.2.1 Effects of duration 

The analysis of parametric changes in BOLD activity to figures 

associated with a fixed coherence and varying duration showed significant 

bilateral activations in the anterior IPS (figure 5.2A), the superior temporal 

sulcus (STS; figure 5.2B) as well as the right planum temporale (figure 

5.2B). Additionally, the MGB was also found to respond to figures with 

increasing duration (figure 5.3). 

5.3.2.2 Effect of coherence 

      The analysis of the effect of increasing the coherence of the figures 

while keeping the duration fixed showed significant bilateral activations in 

the posterior IPS (Figure 5.4A), and the STS (Figure 5.4B).  
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Figure 5.2 The effect of duration on segregation in the SFG stimulus.  

(A) Areas in the anterior IPS showing an increased hemodynamic response as a 

function of increasing duration of the figures with fixed coherence (in green). 

Significant clusters for the effect of duration were found in the anterior IPS 

bilaterally. Results are rendered on the coronal section of the subjects’ normalized 

average structural scan and results are shown at p < 0.001 uncorrected.  

(B) Areas in the STS and PT showing an increased hemodynamic response as a 

function of increasing duration of the figures with fixed coherence (in green). 

Significant clusters for the effect of duration were found in the STS bilaterally and in 

the right PT. Results are rendered on the coronal section of the subjects’ 

normalized average structural scan which is tilted (pitch = -0.5) to reveal significant 

clusters in the superior temporal plane, at p < 0.001 uncorrected. 

 

 

 

 

 

 



234 

 

 

Figure 5.3: MGB activations for effects of duration.  

Areas in the MGB showing an increased hemodynamic response as a function of 

increasing duration of the figures with fixed coherence (in green). Significant 

clusters for the effect of duration were found in the MGB bilaterally (also see Table 

5.1). Results are rendered on the coronal section of the subjects’ normalized 

average structural scan at a threshold of p < 0.001 (uncorrected). 
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Figure 5.4: The effect of coherence on segregation in the SFG stimulus.  

(A) Areas in the posterior IPS showing an increased hemodynamic response as a 

function of increasing coherence of the figures with fixed duration (in green). 

Significant clusters for the effect of duration were found in the posterior IPS 

bilaterally. Results are rendered on the coronal section of the subjects’ normalized 

average structural scan at p < 0.001 uncorrected.  

(B) Areas in the STS showing an increased hemodynamic response as a function 

of increasing coherence of the figures with fixed duration (in green). Significant 

clusters for the effect of duration were found in the STS bilaterally and in the right 

PT. Results are rendered on the coronal section of the subjects’ normalized 

average structural scan to reveal significant clusters in the superior temporal plane 

at p < 0.001 uncorrected. 
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Contrast Brain area x y z t-value z-score 

Effect of duration 

Left IPS 
-42 -46 64 5.14 3.67 

-48 -40 61 4.89 3.56 

Right IPS 
51 -28 61 5.17 3.68 

45 -37 64 4.24 3.25 

Left STS -57 -34 -2 4.42 3.34 

Right STS 60 -13 -11 4.06 3.16 

Right PT 60 -13 10 4.96 3.59 

Left MGB -15 -25 -8 4.85 3.54 

Right MGB 18 -25 -8 4.92 3.57 

       

Effect of coherence 

Left IPS 
-21 -73 46 4.99 3.60 

-24 -73 37 4.36 3.31 

Right IPS 27 -82 31 3.69 2.96 

Left STS -48 -16 -5 3.43 2.81 

Right STS 39 -4 -26 3.77 3.00 
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Table 5.1: MNI coordinates for effects of duration and coherence.  

Coordinates of local maxima for effects of duration and coherence are shown at a 

threshold of p < 0.001 (uncorrected).   

Abbreviations: IPS, intraparietal sulcus; STS, superior temporal sulcus; PT, planum 

temporale; MGB, medial geniculate body. 
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5.3.2.3 Auditory cortex activations 

       As the two main conditions of interest revealed no significant 

clusters in the auditory cortex, a more stringent analysis was performed 

using the probabilistic cytoarchitectonic maps for primary auditory cortex - 

TE 1.0, TE 1.1 and TE 1.2 (Morosan et al., 2001), which are incorporated in 

the SPM Anatomy toolbox (http://www.fz-juelich.de/inm/inm-

1/spm_anatomy_toolbox). A volume of interest analysis was performed that 

did not reveal any significant clusters (p > 0.05, FWE) when examined with 

the maps of the different cortical fields.  

5.4 Discussion 

The results of the psychophysics experiments reported in chapter 3 

suggest the existence of a mechanism that is sensitive to correlations in 

frequency and time, and associated with a rapid buildup on the order of a 

few hundreds of milliseconds. The aim of the present study was to explore 

the neural substrates that mediate such robust segregation using functional 

MRI. A parametric design was employed to examine the sensitivity of the 

underlying mechanisms to spectral and temporal factors: the coherence and 

the duration of the figure were manipulated respectively whilst keeping the 

other dimension fixed. This approach was used to identify the brain areas 

that are sensitive to the coherence and the duration of the figure 

respectively. Another aspect of the design involved keeping the listeners 

naïve to the existence of the figures in the sound stream as the primary aim 

of this study was to elucidate the bottom-up, stimulus-driven bases of 

segregation as highlighted by the behavioural experiments. Listeners were 
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instructed to perform a decoy task based on detection of noise bursts that 

interspersed the SFG stimulus. As predicted by the behavioural experiments, 

the figures were expected to “pop-out” from the background and the 

purpose of the fMRI experiment was to identify brain areas that detect these 

salient figures in the absence of directed attention to the stimuli of interest. 

The results of the study demonstrated that the auditory cortex is not 

sensitive to the emergence of the salient figures; instead, parietal areas in the 

IPS exhibited significant sensitivity to the appearance of figures. These 

results are discussed in the next section in the light of previous work based 

on examination of neural responses to conventional stimulus paradigms 

such as streaming and IM stimuli. 

5.4.1 Auditory cortex and segregation  

 Classically, auditory segregation has been investigated using two 

classes of stimuli.  Simultaneous organization has been studied using signals 

consisting of multiple concurrent components where properties such as 

harmonic structure (tuned vs. mistuned: Alain, 2007; Lipp et al., 2010), 

spatial location (McDonald and Alain, 2005), or onset-asynchrony (Bidet-

Caulet et al., 2007; Sanders et al., 2008; Lipp et al., 2010) were manipulated 

to induce the percept of a single source vs. several concomitant sources. 

Using such signals, human electroencephalography (EEG) and 

magnetoencephalography (MEG) experiments have identified responses in 

non-primary (Alain, 2007; Lipp et al., 2010) and primary auditory cortex 

(Bidet-Caulet et al., 2007), that co-vary with the percept of two sources.         
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 The other class of stimuli used to study scene organization, is the 

streaming paradigm (van Noorden, 1975; Bregman, 1990; Shamma and 

Micheyl, 2010). Streaming refers to the process by which sequentially 

presented elements are perceptually bound into separate ‘entities’ or 

‘streams’, which can be selectively attended to (Elhilali et al., 2009a). 

Human EEG and MEG experiments have demonstrated a modulation of the 

N1m (or M100) response, thought to originate from non-primary auditory 

cortex, depending on whether stream segregation takes place (Gutschalk et 

al., 2005; Snyder and Alain, 2007; Schadwinkel and Gutschalk, 2010; 

Snyder et al., 2012). fMRI studies have additionally identified activations in 

earlier areas along the ascending auditory pathway such as the MGB 

(Kondo and Kashino, 2009, 2012) and the primary auditory cortex (Wilson 

et al., 2007, Deike et al., 2004, 2010; Schadwinkel and Gutschalk, 2010) 

that are correlated with the streaming percept, in line with 

neurophysiological evidence from animal experiments (Fishman et al., 

2001; 2004; Bee and Klump, 2004, 2005; Micheyl et al., 2005; Pressnitzer 

et al., 2008). 

Stimulus-driven stream segregation has been suggested to be 

mediated by basic response properties of auditory neurons: frequency 

selectivity, forward suppression and adaptation, resulting in the activation of 

distinct neural populations pertaining to the figure and background 

(Fishman et al., 2001; Micheyl et al., 2007b; Snyder and Alain, 2007; 

Shamma and Micheyl, 2010; Fishman and Steinschneider, 2010a). Such 

mechanisms have been observed in primary auditory cortex (Fishman et al., 
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2001; 2004; Bee and Klump, 2004, 2005; Micheyl et al., 2005) as well as in 

the cochlea (Pressnitzer et al., 2008). Segregation thus occurs in a 

distributed network over multiple stages in the ascending (and possibly 

descending) auditory pathways as well as areas outside the auditory cortex 

(Cusack, 2005; Dykstra et al., 2011; Hill et al., 2011). 

Consistent with results from Cusack (2005), but contrary to a 

majority of the studies reviewed in section 1.5.1.2, no significant activation 

was found in PAC. This difference could be due to methodological issues 

(see also Cusack, 2005), as well as the more complex nature of the SFG 

stimulus. Furthermore, the fMRI results obtained by Cusack may reflect 

non-time locked activation due to the slow dynamics of the BOLD signal. It 

is possible that the IPS activations in the present study also represent 

induced activity patterns and not evoked activity time-locked to the 

appearance of the figure. In most studies that demonstrated activity in PAC 

to be correlated with the percept of one or two streams, stimulus parameters 

were modulated to produce streaming and any effect on primary cortex 

activity may be due to altered stimulus representations. On the other hand, 

Cusack (2005) used stimuli that produced a bistable percept, without any 

corresponding changes in the physical properties of the stimulus. The lack 

of activation differences in primary auditory cortex in his experiment is 

consistent with sensory rather than perceptual representation at that level. In 

the present study, the absence of activity in PAC could stem from the fact 

that adaptation-based mechanisms in primary auditory cortex, considered to 

underlie stream segregation, are not (or not sufficiently) activated by the 
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stochastic SFG stimuli. Alternatively, the activation of PAC in previous 

studies could be due to selective attention to the target stream (Bidet-Caulet 

et al, 2007; Elhilali et al, 2009b). The present experimental design, on the 

other hand, incorporated short figures and naïve subjects to specifically 

focus on automatic, bottom-up, stimulus-driven mechanisms instead of top-

down attentional influences. 

Furthermore, significant BOLD activity was also observed in the 

STS, which has previously been implicated in the perception of complex 

stimuli with a stochastic structure. It has also been shown to be involved in 

the analysis of spectral shape (Warren et al., 2005), changing spectrum over 

time (Overath et al., 2008), and detecting increasing changes in 

spectrotemporal coherence within acoustic ‘textures’ (Overath et al., 2010; 

see section 1.4.4.1). In sum, these studies suggest a role for STS in the 

‘abstraction’ of features over spectrotemporal space that is relevant to the 

perception of distinct categories. STS is also involved in the analysis of 

stimuli with rich harmonic content such as voices that possess semantic 

information (Belin et al., 2000; Kriegstein and Giraud, 2004).  

An important point to consider regarding the difference in 

experimental designs between previous studies and the current paradigm is 

that sequentially presented patterns were used in previous work where the 

target could be segregated by selective attention to the particular channel. 

Here, the target spanned a wide bandwidth and necessarily involved 

mechanisms that integrated the patterns over large frequency ranges.   
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5.4.2 IPS and auditory perceptual organization 

The activation of IPS in the current study is a result that stands 

contrary to most previous work on streaming. Only a few studies have 

reported activation patterns related to segregation in the IPS (Cusack, 2005; 

Hill et al., 2011). The role of the IPS in auditory perceptual organization 

was first suggested by Cusack (2005) in a study where he measured BOLD 

activation patterns during the presentation of perceptually bistable streaming 

sequences and correlated changes in the BOLD response with listeners’ 

perceptual reports. This allowed him to have a behavioural index on 

listeners’ perceptual states and track on-going brain activity correlated with 

the switches between the two states. A simple contrast that looked at 

differences in activity for epochs associated with a two vs. one stream 

percept revealed significant activity only in the IPS. In another study, Hill 

and colleagues (2011) used bistable streaming stimuli and asked listeners to 

report switches to a grouped and split percept. Using fMRI, they found that 

maintenance of auditory streams is represented in the primary auditory 

cortex whilst the perceptual state is represented in higher-level cortical 

regions including the precuneus and the right IPS. These results are 

consistent with the results obtained by Cusack (2005) and suggest that the 

IPS may track the number of distinct objects after they have been segregated 

by auditory cortex or it may allow broad behavioural goals to influence 

streaming mechanisms. 

Consistent with these findings, bilateral IPS activation was observed 

in the present study that is related to pre-attentive, stimulus-driven figure-
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ground decomposition. The IPS activity was observed for both effects of 

interest, i.e., it increased as a function of coherence as well as duration. This 

pattern of activity was, however, spatially segregated within the IPS such 

that anterior IPS mediated the effects of duration whilst posterior IPS was 

involved in mediating the effects of coherence respectively. Such 

differential activation patterns are consistent with previous reports of 

functional dissociation within the IPS (e.g., Rushworth et al., 2001a; 2001b; 

Rice et al., 2006; Cusack et al., 2010). The two parameters, coherence and 

duration, together can be considered to represent the salience of the figure 

and the activity in IPS may be related to salience detection. This is in 

agreement with several studies of visual attention that consistently implicate 

the parietal cortex. Accumulating evidence also suggests that the IPS is 

crucial for encoding object representations (Xu and Chen, 2009), binding of 

sensory features within a modality (Friedman-Hill et al., 1995; Donner et 

al., 2002, Shafritz et al., 2002; Kitada et al., 2003; Yokoi and Komatsu, 

2009), and across modalities (Bremmer et al., 2001; Calvert, 2001; 

Beauchamp et al., 2004; Miller and D’Esposito, 2005; Buelte et al., 2008; 

Werner and Noppeney, 2010). 

 The implication of IPS in auditory segregation adds a new dimension 

in the light of classic models of auditory scene analysis based on 

mechanisms within the core ‘auditory system’ (Fishman et al., 2001; 

Micheyl et al., 2007b; Snyder and Alain, 2007; Shamma and Micheyl, 

2010). A critical issue that remains to be determined is whether IPS is 

causally responsible for segregation or whether it reflects the output of 
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perceptual organization occurring in primary or secondary auditory cortices 

(Shamma and Micheyl, 2010; Shamma et al., 2011). It is likely that the IPS 

activation observed by Cusack (2005) may result from the application of 

top-down attention during a subjective task or may be related to switching 

attention between the streams in the bistable state. Although IPS has been 

implicated in voluntary and involuntary control and shifts in auditory 

attention (Molholm et al., 2005; Watkins et al., 2007; Salmi et al., 2009; Hill 

et al., 2010), it is unlikely that the activation observed in the present 

experiment relates to top-down application of attention, or the active 

shifting of attention between objects. Listeners were naïve to the existence 

of the figure, and, when questioned, none reported noticing the figures. 

Additionally, the finding that different parametric modulations (duration vs. 

coherence) engage different fields in the IPS is inconsistent with a simple 

account in terms of subjective attention. These results are therefore in line 

with the suggestion that IPS plays an automatic, stimulus-driven role in 

segregation, and provide additional evidence implicating areas beyond the 

auditory cortex in auditory scene analysis. 

5.4.3 IPS and Temporal coherence 

The modeling results from chapter 4 suggest a role for temporal 

coherence in mediating segregation in the complex SFG stimulus. Across a 

variety of experiments (see chapter 3), temporal coherence was found to co-

vary in a manner similar to the psychophysical response curves. Although 

these results do not offer conclusive causal evidence in favour of the 

temporal coherence theory of segregation, nevertheless, they offer 
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substantial bases to speculate a crucial role for temporal coherence. The 

neural substrates of temporal coherence analysis, however, remain 

unknown. In their recordings from ferret A1, Elhilali and colleagues (2009a) 

did not find any evidence of cells that show sensitivity to temporal 

coherence. This begs the question of the neural bases of temporal coherence 

analysis. In the light of the current fMRI results, it is tempting to speculate a 

role for the IPS that is considered next.  

The parietal cortex receives bottom-up auditory input from the 

temporoparietal cortex (Pandya and Kuypers, 1969; Divac et al., 1977; 

Hyvärinen, 1982; Cohen, 2009) as well as top-down attentional input from 

the prefrontal cortex (Anderson et al., 1985; Barbas and Mesulam, 1981; 

Petrides and Pandya, 1984; Stanton et al., 1995) and is thus in an ideal 

position to integrate both stimulus-driven and top-down signals. The IPS has 

been implicated in both bottom-up and top-down attention and is a key 

structure implicated in saliency map models of visual search (Koch and 

Ullman, 1985; Itti and Koch, 2001; Walther and Koch, 2006, 2007) where 

low-level feature maps may combine with top-down cognitive biases to 

represent a global saliency map (Gottlieb et al., 1998; Geng and Mangun, 

2009; Bisley and Goldberg, 2010). Furthermore, IPS (and its monkey 

homologue, lateral intraparietal; area LIP) has been implicated in mediating 

object representations, binding of sensory features within and across 

different modalities, as well as attentional selection as reviewed above. 

These lines of anatomical evidence present a sound basis to consider that the 

IPS may analyze input signals from the auditory cortices and compute 
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temporal coherence. An alternative possibility is that secondary auditory 

cortices involved in complex sound processing, such as the PT that was 

found to be active in the current study, may already process temporal 

structure and project the output to be represented in the IPS where selective 

attention may come into play as discussed in section 4.5.3. The temporal 

coherence model proposes that selective attention to a particular acoustic 

feature such as frequency may help bind together other temporally 

correlated features such as intensity or spatial location in order to encode the 

auditory object as a coherent whole.  

It remains to be seen, however, whether the IPS actually represents a 

neural correlate of the figure percept. It is likely that such a perceptual 

representation depends on the computation of temporal coherence across 

multiple channels that are initially represented in the auditory cortex and 

biased by the IPS to attend to particular features within that object. 

Neurophysiological recordings from parietal neurons might in future 

determine whether such sensory analysis (before perceptual representation) 

involves parietal neurons or is established in auditory cortex first. 
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Chapter 6. MAGNETOENCEPHALOGRAPHY 

 

Summary 

In this study, MEG was used to examine the temporal dynamics of 

figure processing in the SFG stimulus. Behavioural results suggest a rapid 

buildup mechanism which may not be captured by the slow haemodynamics 

of fMRI which did not reveal any sources in the PAC; instead, IPS was 

found to be sensitive to the coherence and duration of the figure. Here, the 

high temporal resolution of MEG was used to study the evolution of figure 

processing with a specific focus on the auditory cortex. A passive design 

was used where listeners performed an irrelevant visual task whilst listening 

to the SFG stimuli that involved a simple transition from background to a 

figure with different levels of coherence. Two separate experiments with 

different SFG stimuli were conducted: these included the basic SFG 

stimulus and a variant with white noise between successive stimulus chords 

as reported in chapter 3. The results demonstrate robust evoked transition 

responses that consisted of an early peak and a later sustained component, 

the amplitude of which varied as a function of the coherence of the figure. 

Source reconstruction of evoked power revealed that PAC as well as IPS 

responded to the emergence of salient figure segments in both stimulus 

conditions. Analysis of the sustained phase of the response to the basic 

stimulus found activity in IPS that was not present during the early phase, 

suggesting a specific role for IPS in the perceptual representation of 

coherent figures after initial encoding in PAC.  
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6.1 Introduction 

The detection of novel changes in the acoustic environment and 

separating out relevant sounds are fundamental auditory tasks. These 

processes usually occur over a short time scale, i.e. less than a couple of 

hundred milliseconds. It is indeed essential to respond quickly to new 

sources of sound and produce appropriate behavioural responses like 

approaching (e.g. attending to a crying baby) or avoiding (e.g. a lion in a 

jungle) the sound source. To process acoustic scenes on such a fast 

timescale requires mechanisms that are highly sensitive to salient changes in 

the acoustic environment. It has been shown that encoding sound onsets 

occurs quite rapidly with a latency of ~100ms (Lutkenhoner et al., 2003). 

However, the detection of a target signal in the presence of several 

simultaneous signals is a more complex task and the temporal dynamics of 

segregation in such complex sound scenes remains to be fully elaborated. 

In humans, this question has been examined using functional 

imaging techniques with high temporal resolution such as EEG and MEG 

(Nagarajan et al., 2010) as well as direct intracortical recordings that can 

accurately track brain activity every millisecond. Studies of auditory 

segregation using EEG and MEG (Snyder and Alain, 2007) are based on 

simple stimulus paradigms such as streaming, oddball sequences, and 

informational masking paradigms. The earliest paradigm used in human 

neurophysiological experiments was based on auditory deviant responses 

classified as the MMN response (Naatanen et al., 2007). It is a pre-attentive 

differential evoked response that occurs 150-250ms following sound onset 



250 

 

when a violation in an acoustic pattern is detected, either passively or 

consciously (see section 1.4.2). Based on alternating patterns of high and 

low frequency tones, Sussman and colleagues (1999) demonstrated that 

stronger MMN is elicited for violations that are more readily perceived 

when the spectral separation between the tones is large, and suggested that 

streaming does not require directed attention. Beyond ERP experiments, 

Gutschalk et al. (2005) used MEG and demonstrated activity in the auditory 

cortex that varied as a function of the spectral separation in a streaming 

paradigm. They found that the amplitude of the P1 and N1 responses varied 

according to the perceptual state of the listeners, and were stronger in the 

case of segregated compared to single stream percepts. Bistable streaming 

paradigms have also been employed (Snyder et al., 2006; Hill et al., 2012; 

Szalardy et al., 2013) which revealed a positive-difference wave around 60-

100ms post B-tone onset and localized in the auditory cortex, for segregated 

vs. integrated percepts. Dykstra et al. (2011) on the other hand, used surface 

recordings from the human cortex and found that distributed brain areas 

including the temporal, frontal and parietal cortices covaried with frequency 

separation in an active streaming task.  

Further neurophysiological evidence supporting a role for the 

auditory cortex comes from the informational masking paradigm (see 

section 1.4.3). IM refers to a form of non-energetic masking and reflects 

computations at the level of the central auditory system rather than the 

periphery. Multi-tone complexes are used which consist of a regularly 

repeating target tone that tends to “pop out” from the random masking 
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tones. Interestingly, the buildup of this pop out effect mirrors the buildup 

observed in the streaming signals, suggesting a common underlying neural 

mechanism (Micheyl et al., 2007a). Using this paradigm, Gutschalk and 

colleagues (2008) demonstrated activity in the auditory cortex specifically 

for detection of target tones and no response for missed targets: this 

perceptual response was termed the awareness related negativity (ARN). 

Similarly, Elhilali and coworkers (2009b) demonstrated evoked activity in 

the auditory cortex that was left lateralized when the target was attended (cf. 

Deike et al., 2004, 2010), and right lateralized when the masker was 

attended.  

The consensus from these and other neurophysiological studies in 

humans (reviewed in section 1.5) based on low-level sequences of tones as 

well as higher-level speech streams (Ding and Simon, 2012; Mesgarani and 

Chang, 2012; Zion-Golumbic et al., 2013) points to a role for the auditory 

cortex in sensory stimulus-specific processing at an early stage as well as 

perceptual representation of the target signal, which can be modulated by 

attention (Fritz et al., 2007).  

The aim of the present study was to examine the nature of figure-

ground analysis in the SFG signal that represents a more ecologically valid 

representation of natural sound scenes. Specifically, the aim was to examine 

the buildup of segregation in the SFG stimulus that involved a simple 

transition from background to figure. A passive design was used where 

listeners’ attention was directed to an unrelated visual task to look at 

bottom-up correlates of segregation as previously found in the fMRI study. 
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The results of the fMRI experiment (see section 5.3.2) did not reveal any 

activation in the primary auditory cortex as a function of increasing 

coherence and duration of the figures, which may be attributed to the slow 

nature of the haemodynamic response function. Instead, activity in the IPS 

was modulated by the two spectrotemporal parameters of the figure. The 

role of IPS in auditory scene analysis has also been suggested by previous 

fMRI work (Cusack, 2005; Hill et al., 2011) but remains to be seen in EEG 

or MEG data. These results motivated the use of IPS as a spatial prior in 

source reconstruction of phase-locked power following the transition to a 

figure. 

Here, MEG was employed to specifically examine the evolution of 

time-locked activity during figure processing in the SFG stimulus. With 

respect to the underlying mechanisms, a basis for the temporal coherence 

theory (Shamma et al., 2011) was predicted on the basis of modeling as 

described in chapter 4: it was hypothesized that both auditory cortex and IPS 

would be involved in coherence computations following the transition to a 

figure with an early role in encoding stimulus features in the auditory cortex 

and a later, possibly top-down role for the IPS in representation of temporal 

coherence based on inputs from the auditory cortex.  

6.2 Materials and methods 

6.2.1 Participants 

6 listeners (3 females; mean age = 24.5 ± 3.8 years) and another 5 

listeners (5 females; mean age = 24 ± 4.7 years) took part in two separate 
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psychophysics experiments based on the ‘basic’ and the ‘noise’ versions of 

the SFG stimulus respectively.  

23 participants (12 female; mean age = 23.9 ± 6.2 years) with normal 

hearing and no history of neurological disorders took part in the MEG 

experiment. Experimental procedures were approved by the Institute of 

Neurology Ethics Committee (London, UK), and written informed consent 

was obtained from each participant. The data from three participants was 

excluded from analysis due to excessive movement during the scan.  

6.2.2 Stimuli 

6.2.2.1 SFG stimulus 

The stimuli in the MEG experiments were slightly modified from the 

original SFG stimulus (see section 3.2.1) due to the sound delivery 

constraints imposed by the Etymotic tubes. These tubes act as low-pass 

filters and their frequency response tails off after ~ 2.5 kHz. Thus, the 

bandwidth of the SFG signals was reduced from ~ 7.2 kHz to 2.5 kHz for 

the MEG experiments. Two variations of the SFG stimuli were used: a 

faster version of the stimulus with 25ms chords (figure 3.2B) and a version 

of the stimulus with 25ms of white noise present between successive 

stimulus chords, each 25ms long (figure 3.2E; see section 3.2.3). These 

stimuli were used as it was previously demonstrated that there is no 

significant difference in performance between the original SFG stimulus 

based on 50ms long chords and these two versions of the stimuli 

respectively (see section 3.3). The use of the SFG stimuli with 25ms chords 

further helped in reducing the total duration of the experiment.  
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In order to test whether the reduced bandwidth did not affect figure 

detection, behavioural experiments were conducted for each version of the 

stimulus as described below. The stimuli for the psychophysics experiments 

were similar to those used in chapter 3: the figure was flanked by a 

background segment on either side.  

In the MEG, however, a modified version of the stimuli was used: 

instead of a background-figure-background design, a simpler version with 

just one transition from background to figure was used as shown in figures 

6.1 and 6.2 for the basic and the noise versions of the stimuli. This design 

was used to specifically examine evoked responses at the transition from 

background to a figure with different coherence levels (0, 2, 4, and 8 

coherent components respectively) as well as activity related to maintenance 

of the figure percept. The way the stimulus was designed involved 

generating a background segment for the total duration of the stimulus, and 

incorporating additional components that were correlated in the figure 

segments (coherence = 2, 4, or 8) and uncorrelated in the background 

segment (coherence = 0) that served as a control. Thus, there was an 

increase in energy following the transition but the different stimuli were 

balanced with respect to their spectral energy profiles after the transition. 
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Figure 6.1: Spectrogram of the basic SFG stimulus used in MEG.  

The stimulus consists of a series of 25ms long chords presented consecutively 

without any gap. The first 600ms of the stimulus consists of a background segment 

following which there is a transition to a coherent figure segment that is 600ms 

long. In the above example, the transition is indicated by the black vertical line. The 

coherence of the post-transition figure segment is equal to 4 and the repeating 

components are indicated by the black arrows.  
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Figure 6.2: Spectrogram of the noise SFG stimulus used in MEG.  

The noise stimulus consists of a series of 25ms long chords that alternate with 

25ms of white noise. The first 1200ms of the stimulus consists of a background 

segment following which there is a transition to a coherent figure segment for 

another 1200ms. In the above example, the transition is indicated by the black 

vertical line and the coherent figure components (equal to 4) are indicated by the 

black arrows.  
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All acoustic stimuli were created using MATLAB 7.5 software (The 

Mathworks Inc.) at a sampling rate of 44.1 kHz and 16 bit resolution. 

Sounds were delivered diotically through Etymotic tubes and presented at a 

comfortable listening level of 60 to 70 dB SPL that was adjusted by each 

listener. Sounds were presented using Cogent 

(http://www.vislab.ucl.ac.uk/cogent.php).  

6.2.2.2 Visual stimulus 

An incidental visual task was used to engage participants’ attention 

whilst passively listening to the SFG stimuli. Participants were instructed to 

pay attention to a series of images of landscapes and geographical 

landmarks as shown in figure 6.3. Each trial consisted of a set of three 

randomly chosen images from a set of 177 images. The task involved 

pressing a button if the third image was identical to the first image and to 

withhold responses if they were dissimilar. Each image was displayed for a 

random interval between 2 and 5s. The inter-trial interval varied randomly 

between 2 and 5s and the presentation of the images was not synchronized 

with the acoustic stimuli. All visual stimuli were presented from another 

machine using Cogent.  
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Figure 6.3: Visual task paradigm.  

Listeners were required to pay attention to a series of 3 images of landscapes on 

each trial and press a button if the third image was identical to the first one. The 

presentation of the images was not synchronized to the acoustic stimulus. 
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6.2.3 Procedure 

6.2.3.1 Psychophysics 

Prior to the main experiment, participants received training that 

consisted of listening to trials with no figures, easy-to-detect figures (high 

coherence and duration), difficult-to-detect figures (low coherence and 

duration) and as well as a practice block. In the main sessions, the value of 

coherence and duration was indicated before each block and participants 

were instructed to press a button as soon as they detected a figure. Feedback 

was provided. Blocks with different values of coherence (2, 4, and 8) and 

duration (2-7) were presented in a pseudorandom order. The participants 

self-paced the experiment and each experiment lasted approximately an hour 

and a half. The procedure was identical for both experiments based on the 

‘basic’ and the ‘noise’ versions of the SFG stimulus. The psychophysics was 

performed on a separate set of participants independently from the MEG 

experiment. 

6.2.3.2 Magnetoencephalography 

A functional source-localizer session was used at the start of the 

experiment that required participants to listen to a series of 100ms long pure 

tones (frequency equal to 1000 Hz) for approximately three minutes. The 

number of tones varied (between 180 and 200) with a random inter-stimulus 

interval that ranged between 700 and 1500ms. Listeners were required to 

attend to the sounds and report the total number of tones presented. This 

‘auditory localizer’ session allowed an examination of MEG sensors that 

responded most robustly to sound onset which presumably reflect auditory 
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cortical activation. 

The MEG experiment lasted between 1.5 and 2 hours and consisted 

of 8 blocks. Half of these blocks involved presentation of the basic SFG 

stimulus whilst the noise SFG stimulus was presented in the remaining four 

blocks. The order of the presentation of the basic and noise SFG stimuli was 

counterbalanced between subjects. For both stimulus conditions, the 

coherence of the post-transition segment was selected from one of 4 values 

(0, 2, 4, or 8). The number of control stimuli in each block (coherence of 

post-transition segment equal to 0) was equal to the number of stimuli with 

higher coherence levels (2, 4, or 8) combined to counterbalance the total 

number of transitions to a background and figure segment respectively. The 

duration of the basic SFG stimulus was 1200ms (600ms ground and 600ms 

figure segments) whilst the duration of the noise SFG stimuli was 2400ms 

(1200ms ground and 1200ms figure segments) respectively. Each block 

lasted between 8-10 minutes and subjects were allowed a short rest between 

blocks.  

Importantly, the listeners were kept naïve to the stimulus structure 

and the aims of the experiment: they were instructed to perform a visual 

memory task based on a series of images of landscapes as depicted in figure 

6.3. Feedback on the visual task was provided at the end of each block.   

6.2.4 Data acquisition and analysis 

MEG signals were recorded using a CTF-275 MEG system (axial 

gradiometers, 274 channels; VSM MedTech, Canada) at a sampling rate of 

600 Hz. 
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A functional localizer session preceded the experimental blocks and 

the data from this session was divided into 700ms epochs, including 200ms 

pre-stimulus baseline period. A low pass filter with a cut-off frequency of 

30Hz was applied to the baseline-corrected epochs. Visual artifacts were 

rejected using an in-built algorithm in Fieldtrip (Oostenveld et al., 2011). 

The M100 response was identified for each participant and the 40 strongest 

channels at the peak of the M100 (20 in each hemisphere) were selected as 

the channels that respond most robustly to sound. These channels were 

considered to reflect activity in the auditory cortex.  

Data from the main experimental blocks consisted of a 500ms pre-

stimulus baseline, and a 200ms post-stimulus period for the basic and noise 

SFG stimuli whose duration was equal to 1200 and 2400ms respectively. 

Data from approximately 100 epochs was averaged and low-pass filtered at 

30Hz. In each hemisphere, the RMS of the field strength across the 20 

channels, selected in the functional source localizer run, was calculated for 

each participant. These evoked responses were further processed using DSS 

(Denoising Source Separation; de Cheveigné and Parra, 2013) which is a 

procedure similar to ICA (Independent Component Analysis) that identifies 

the most reproducible components in electrophysiological time-series data. 

These data from each participant were averaged to obtain the group-RMS 

plots as shown in figures 6.5 and 6.14. 

6.2.5 Source modeling 

Source reconstruction of evoked power was performed using the 

‘Imaging’ approach implemented in SPM12 (Litvak et al., 2011; Wellcome 
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Trust Centre for Neuroimaging). This method is based on an empirical 

Bayesian approach and the data can be inverted using a number of 

algorithms which have different assumptions about the data. Here, the IID 

approach based on a classical minimum norm algorithm was used to identify 

distributed sources of brain activity underlying the transition from a 

background to a coherent figure. The underlying principles of the method 

are described in detail in section 2.7.4. 

For both stimulus conditions, data from the initial transition phase as 

well as a later sustained phase were localized separately. The assumption 

behind this design was to identify brain areas that may be differentially 

involved in initial figure-ground processing vs. perceptual representation of 

the figure. 

The results were written out as 3D NIfTI images and analyzed using 

GLM-based statistical tests using Random Field theory. This approach is 

similar to the second level analysis used in fMRI to make inferences about 

region- and trial-specific effects (see section 2.6). For reconstruction of 

average evoked power, a time window of 300ms and a low frequency range 

from 0 to 48Hz was specified for both the early and late windows of 

interest. The data for all conditions was inverted together and separate NIfTI 

images were processed for each condition. The resultant 3D images were 

smoothed by using a Gaussian kernel with 5mm FWHM and taken to 

second-level analysis for statistical inference.  
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6.3 Results (‘basic SFG’) 

The aim of the MEG analysis was to examine the temporal dynamics 

of figure processing in the SFG stimulus with a specific focus on the evoked 

responses at the transition from background to a figure with different 

coherence levels. An additional aim was to perform source reconstruction 

and identify brain areas involved in processing the transition to a coherent 

figure. The lack of parametric BOLD activity in the auditory cortex in the 

fMRI study provided another aim: to better understand the nature of 

processing in the auditory cortex and determine whether the lack of 

activation in the fMRI study was due to the slow nature of the underlying 

haemodynamics. The fMRI results also provided an a priori hypothesis for a 

specific role for the IPS in mediating the transition to figures and 

representation of the temporal coherence associated with the salient figures. 

All analyses was conducted separately for the two versions of the 

stimuli used: the ‘basic’ SFG stimulus with 25ms long chords, and the 

‘noise’ version of the SFG stimulus with 25ms long white noise segments 

between successive stimulus chords of the same duration (see section 

6.2.2.1). Results from the psychophysical experiments, analysis of evoked 

MEG responses and source modeling are described in the following sections 

for the two studies respectively.  

6.3.1 Psychophysics  

Prior to the MEG experiments, psychophysics was used to examine 

figure-detection performance in a version of the SFG stimulus with reduced 
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bandwidth. This was done because of the limitations of the Etymotic tubes 

used for sound delivery in the MEG that have a low-pass filter 

characteristic. Thus, it was important to ensure that figure-detection 

performance is not affected by bandwidth and whether the results are 

qualitatively similar to those reported in Chapter 3. In these experiments, the 

frequency range of the stimulus varied from ~200Hz to ~2.5kHz and the 

duration of each chord was 50ms. 

Behavioural results based on the ‘basic’ version of the SFG stimulus 

from 6 participants are shown in figure 6.4. The results indicate that 

listeners are sensitive to figures that span a narrower bandwidth. 

Performance for detection of figures with coherence equal to 2 was below 

chance but it increased monotonically for figures with coherence of 4 and 8 

respectively.  
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Figure 6.4: Figure-detection performance for the ‘basic’ SFG stimulus.  

Behavioural results (d’; n=5) are plotted on the ordinate and the duration of the 

figure (in terms of number of 50ms long chords) is shown along the abscissa. The 

coherence of the stimuli was 2, 4, or 8 and six different levels of duration were 

tested. Listeners were required to press a button as soon as they heard a figure 

pop out from the background. Error bars signify one SEM. 
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6.3.2 Auditory evoked-fields  

Figure 6.5 illustrates the group-RMS of auditory-evoked responses 

to the transition between the background and the figures separately for the 

left and right hemispheres respectively. The evoked field strengths are 

shown separately for the different coherence levels including the control 

condition that did not involve any change in coherence after transition.  

These data demonstrate a strong response after transition that peaks 

256.7 (251.7), 293.3 (288.3), and 298.8 (335) ms in the left (right) 

hemispheres after transition to a figure with coherence equal to 8, 4, and 2 

respectively. The peak response is followed by a sustained phase of activity 

that persists throughout the duration of the figure that is followed by an 

offset response. The evoked responses are scaled according to the coherence 

of the figure with stronger responses for transition to a figure with higher 

coherence levels even though there is no difference in intensity. 

Furthermore, the latencies at which the evoked field strengths for 

each of the three coherence levels were found to become significantly 

different from the field strength for the control condition (coherence = 0) 

were found to approximately parallel behavioural latencies for supra-

threshold detection of the figures. For coherence of 8, the field strength 

became significantly different after 120ms which approximately 

corresponds to a figure with duration of 5 chords, for which d’ of 0.87 ± 

0.25 were achieved. For coherence of 4, the corresponding evoked field 

latency was 165ms which corresponds to a figure whose duration is equal to 

6.6 chords. The d’ for the detection of figures with coherence equal to 4 and 
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duration equal to 6 was 1.00 ± 0.22. These results suggest that the brain 

takes at the most as much time as the duration of the figure to detect the 

emergence of a salient figure even without the application of directed 

attention.  
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Figure 6.5: Evoked field strengths in response to a transition from 

background to figure in the basic SFG stimulus.  

The magnetic field strength in Tesla is plotted on the ordinate and time in 

milliseconds is plotted on the abscissa. The dotted black line separates the 

background from the following figure segments whose coherence is colour coded 

as indicated in the legend on the top right. The left and right panels indicate the 

resultant evoked field strengths in the left and right hemispheres respectively.  
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6.3.3 Source modeling 

Source reconstruction of evoked power was performed for two 

distinct phases of the post-transition response: an early phase from 0-300ms 

following the transition from ground to figure; and a late phase from 300-

600ms after the transition. In the basic stimulus, the transition occurred 

midway through the stimulus, i.e., 600ms following sound onset.  

IID source modeling algorithm was used to identify distributed 

sources for the early and the late (sustained) components separately. The 

modeled data was converted into NIFTI images that were taken to second-

level and analyzed using conventional GLM-based statistical methods. 

Three different parametric tests were used: 

i) ANOVA: to examine areas that are sensitive to increasing coherence;  

ii) 2-samples t-test: to investigate brain areas that specifically mediate the 

perceptual effects of figure processing without any confound related 

to intensity differences between the two different levels of stimuli; 

and, 

iii) 1-sample t-test: to identify regions that show sensitivity to the onset of 

the salient figures. 

The results for the source reconstruction of evoked power during the early 

and the late components are summarized in tables 6.1 and 6.2 respectively.  
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Contrast Brain areas x y z t-value z-score 

Effect of coherence R HG 52 -14 16 4.91 4.53 

COH8 vs. COH4 R HG 48 -22  6 3.88 3.51 

COH8 vs. COH2 R HG 50 -16 16 3.91 3.53 

COH8 vs. COH0 R HG 60 -18  8 4.03 3.62 

COH8 

R HG 48 -26 2 7.14* 4.79* 

L HG -50 -26 26 5.88* 4.29* 

R IPS 54 -52 28 5.44 4.08 

L IPS -50 -48 36 5.09 3.91 

R IFG 42 28 -14 7.73* 5.00* 

COH4 

R HG 50 -20  2 7.01* 4.74* 

L HG -54 -20 14 6.89* 4.70* 

R IPS 44 -60 48 3.91 3.26 

L IPS -50 -52 38 4.09 3.36 

COH2 

R HG 50 -24  2 7.57* 4.94* 

L HG -60 -18 22 6.22 4.43 

R IPS 48 -56 36 4.71 3.72 

L IPS -50 -48 36 4.15 3.40 

COH0 

R HG 42 -28 20 5.95* 4.31* 

L HG -54 -22 22 6.03* 4.35* 

R IPS 50 -62 26 5.78 4.24 

L IPS -48 -46 36 4.34 3.51 
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Table 6.1: MNI coordinates for reconstruction of evoked power in the early 

transition phase of the basic SFG stimulus.  

Source coordinates of activity during the early phase of the transition (0-300ms 

following transition) to a figure specifically in the auditory cortex and the IPS are 

shown for the different contrasts as indicated. Asterisk indicates statistical 

significant at p < 0.05 (FWE) whilst other results hold at p < 0.001 (uncorrected). 
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For the early phase of the transition (first 300ms following the 

transition), the ANOVA analysis revealed a main effect of coherence in the 

right auditory cortex including HG and STS as shown in figure 6.6. 

However, due to the nature of the stimulus design, these areas cannot be 

said to purely mediate perceptual analysis of the figures as there were 

greater number of chords in the post-transition segments (see stimulus 

design in section 6.2.2). To analyze areas that are activated as a function of 

coherence irrespective of such energetic confounds, 2-samples t-tests were 

performed for the contrasts shown in figure 6.6. The data indicate greater 

activation in the right auditory cortex for coherence level of 8 relative to 

each of the other coherence levels.  

Analysis for a main effect of each of the individual coherence levels 

revealed bilateral sources of activity in the auditory cortex as shown in 

figure 6.7. Also, significant clusters of activity were found in the IPS 

following a small-volume correction for representation of each of the four 

levels of coherence as shown in figure 6.8.  
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Figure 6.6: Activity in the auditory cortex as a main effect of coherence and 

difference in coherence levels during the early phase of the basic SFG 

stimulus.  

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. The t-values 

for the significant voxels for each contrast are scaled according to the heat map on 

the right of each image. COH8, COH4, COH2, GND refers to the coherence value 

of a figure with 8, 4, 2, and 0 repeating components respectively. This 

nomenclature applies to figures 6.6 - 6.19. 
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Figure 6.7: Activity in auditory cortex related to representation of figures with 

different coherence levels (1-sample t-test) during the early phase of the 

basic SFG stimulus.  

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. The t-values 

for the significant voxels for each contrast are scaled according to the heat map on 

the right of each image. 
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Figure 6.8: Activity in IPS related to representation of figures with different 

coherence levels during the early phase of the basic SFG stimulus.  

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. A small-

volume correction using a mask for IPS in the SPM Anatomy toolbox (Eickhoff et 

al., 2005) was used to obtain these results. The t-values for the significant voxels 

for each contrast are scaled according to the heat map on the right of each image. 
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For the later sustained phase of the transition (from 300-600ms 

following the transition), the ANOVA analysis revealed a main effect of 

coherence bilaterally in the auditory cortex including the STS in the right 

hemisphere shown in figure 6.9. Analysis of brain regions that are purely 

activated as a function of coherence revealed clusters of activity in the 

auditory cortex as depicted in figure 6.9. Figure 6.10 shows activations in 

the IPS as a main effect of coherence. Activity in the IPS was also found to 

occur as a function of difference in coherence levels as shown in figure 

6.10. Analysis for a main effect of each of the individual coherence levels 

revealed sources of activity in the auditory cortex as shown in figure 6.7as 

well as the IPS as shown in figure 6.8. The MNI coordinates of the sources 

for each of the above analyses are summarized in table 6.2. 
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Contrast Brain areas x y z t-value z-score 

Effect of coherence 

R HG 62 -16 6 7.35* 6.30* 

L HG -52 -24 12 5.84* 5.25* 

R IPS 54 -52 30 4.98 4.59 

L IPS -48 -62 34 3.98 3.77 

COH8 vs. COH4 R HG 60 -16 4 3.54 3.24 

COH8 vs. COH2 

R HG 60 -16 10 4.63 4.05 

L HG -52 -22 14 4.36 3.85 

R IPS 54 -54 30 3.99 3.59 

COH8 vs. COH0 

R HG 62 -16 6 6.07 4.96 

R IPS 54 -52 32 4.81 4.17 

L IPS -50 -52 42 3.65 3.33 

COH4 vs. COH0 R IPS 42 -58 28 3.38 3.12 

COH8 

R HG 50 -18 0 8.65* 5.29* 

L HG -46 -26 16 9.71* 5.58* 

R IPS 50 -54 32 6.08* 4.37* 

L IPS -50 -50 42 4.20 3.43 

COH4 

R HG 50 -22 2 8.90* 5.36* 

L HG -52 -24 14 7.36* 4.87* 

R IPS 44 -60 34 5.17 3.95 

L IPS -50 -48 36 4.96 3.85 

COH2 

R HG 50 -24 2 12.00* 6.11* 

L HG -54 -20 16 6.49* 4.54* 

R IPS 56 -52 28 5.12 3.93 

L IPS -50 -50 36 5.21 3.97 

COH0 

R HG 48 -28 2 6.80 4.66 

R IPS 54 -52 30 5.33 4.03 

L IPS -50 -48 36 4.47 3.59 
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Table 6.2: MNI coordinates for reconstruction of evoked power in the late 

sustained phase of the basic SFG stimulus.  

Source coordinates of activity during the late sustained phase of the transition 

(300-600ms following transition) to a figure specifically in the auditory cortex and 

the IPS are shown for the different contrasts as indicated. Asterisk indicates 

statistical significant at p < 0.05 (FWE) whilst other results hold at p < 0.001 

(uncorrected). 
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Figure 6.9: Activity in the auditory cortex as a main effect of coherence and 

difference in coherence levels during the late phase of the basic SFG 

stimulus.  

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. The t-values 

for the significant voxels for each contrast are scaled according to the heat map on 

the right of each image. 

 

 

 



281 

 

 

Figure 6.10: Activity in IPS as a main effect of coherence and difference in 

coherence levels during the late phase of the basic SFG stimulus.  

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. A small-

volume correction using a mask for IPS in the SPM Anatomy toolbox (Eickhoff et 

al., 2005) was used to obtain these results. The t-values for the significant voxels 

for each contrast are scaled according to the heat map on the right of each image. 
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Figure 6.11: Activity in auditory cortex related to representation of figures 

with different coherence levels during the late phase of the basic SFG 

stimulus.  

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. The t-values 

for the significant voxels for each contrast are scaled according to the heat map on 

the right of each image. 
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Figure 6.12: Activity in IPS related to representation of figures with different 

coherence levels during the late phase of the basic SFG stimulus.  

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. A small-

volume correction using a mask for IPS in the SPM Anatomy toolbox (Eickhoff et 

al., 2005) was used to obtain these results. The t-values for the significant voxels 

for each contrast are scaled according to the heat map on the right of each image. 
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6.4 Results (‘noise SFG’) 

6.4.1 Psychophysics 

Behavioural results based on the ‘noise’ version of the SFG stimulus 

with a reduced bandwidth are shown in figure 6.13. The results from 5 

participants indicate that listeners are still sensitive to figures that consist of 

alternating SFG and white noise chords. Performance for detection of 

figures increased monotonically with increasing coherence of the figures. 
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Figure 6.13: Figure-detection performance for the ‘noise’ SFG stimulus.  

Behavioural results (d’; n=6) are plotted on the ordinate and the duration of the 

figure (in terms of number of 50ms long chords) is shown along the abscissa. The 

coherence of the stimuli was 2, 4, or 8 and six different levels of duration were 

tested. Listeners were required to press a button as soon as they heard a figure 

pop out from the background. Error bars signify one SEM. 
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6.4.2 Auditory-evoked fields 

Figure 6.14 illustrates the group-RMS of auditory-evoked transition 

responses for the different coherence levels in the left and right hemispheres 

respectively. The data reveal an early transition response followed by a 

sustained component for transition to figures with coherence of 4 and 8. For 

transition to figures with coherence level of 2, the responses were not 

significantly different from the control condition whilst the responses for the 

higher coherence levels (4 and 8) increased as a function of coherence.  

In this condition as well, the latencies at which the evoked field 

strengths (for transition to coherence = 4 and 8 only) became significantly 

different from the field strength for the control condition mirrored the 

behavioural latencies for supra-threshold detection of the figures. For 

coherence of 8, the field strength became significantly different after 173ms 

which corresponds to 100ms of SFG chords (remaining duration is white 

noise). This is equal to the duration of a figure with 4 repeating chords for 

which d’ of 0.85 ± 0.20 were obtained. For coherence of 4, the 

corresponding evoked field latency was 347ms (comprising of 175ms of 

SFG chords) which corresponds to a figure whose duration is equal to 6.9 

chords approximately. The d’ for the detection of figures with coherence 

equal to 4 and duration equal to 7 was 1.70 ± 0.31.  
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Figure 6.14: Evoked field strengths in response to a transition from 

background to figure in the noise SFG stimulus.  

The magnetic field strength in Tesla is plotted on the ordinate and time in 

milliseconds is plotted on the abscissa. The dotted black line separates the 

background from the following figure segments whose coherence is colour coded 

as indicated in the legend on the top right. The left and right panels indicate the 

resultant evoked field strengths in the left and right hemispheres respectively.  
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6.4.3 Source modeling 

Similar source analyses as that performed for the basic SFG stimulus 

was done. The sources underlying the early and the late components were 

analyzed separately based on 300ms long windows: from 0-300ms for the 

early component and from 900-1200ms post-transition for the late 

component. The transition from background to figure occurred at 1200ms 

following sound onset.  

IID source reconstruction method was used to identify the sources 

for the early and the late components separately. The modeled data was 

converted into NIFTI images that were taken to second-level and analyzed 

using three different parametric tests: 

iv) ANOVA: to examine areas that are sensitive to increasing coherence;  

v) 2-samples t-test: to investigate brain areas that specifically mediate the 

perceptual effects of figure processing without any confound related 

to intensity differences between the two different levels of stimuli; 

and, 

vi) 1-sample t-test: to identify regions that are sensitive to the onset of the 

salient figures. 

The results for the source reconstruction of evoked power during the early 

and the late components are summarized in tables 6.3 and 6.4 respectively.  
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Contrast Brain areas x y z t-value z-score 

Effect of coherence L IFG -40 20 -14 3.89 3.71 

COH8 vs. COH0 L IFG -40 20 -14 3.86 3.52 

COH4 vs. COH0 L IPS -38 -58 -50 3.50 3.23 

COH2 vs. COH0 L IPS -28 -70  34 4.90 4.28 

COH8 

R HG 60 -26 10 5.55* 4.23* 

L HG -56 -16  2 6.18* 4.52* 

R IPS 48 -56 36 4.98 3.93 

L IPS -50 -48 36 4.23 3.51 

COH4 

R HG 48 -28  2 6.14* 4.50* 

L HG -46 -30 18 6.10* 4.48* 

R IPS 58 -54 24 5.28 4.09 

L IPS -46 -58 38 5.07 3.98 

COH2 

R HG 60 -26 10 8.03* 5.24* 

L HG -60 -30 10 5.94* 4.41* 

R IPS 56 -52 28 4.36 3.59 

L IPS -50 -48 36 5.03 3.96 

COH0 

R HG 48 -28  2 6.51 4.66 

L HG -48 -16 16 6.26 4.56 

L IPS -38 -58 50 3.50 3.23 
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Table 6.3: MNI coordinates for reconstruction of evoked power in the early 

transition phase of the noise SFG stimulus.  

Source coordinates of activity during the early phase of the transition (0-300ms 

following transition) to a figure specifically in the auditory cortex and the IPS are 

shown for the different contrasts as indicated. Asterisk indicates statistical 

significant at p < 0.05 (FWE) whilst other results hold at p < 0.001 (uncorrected). 
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Figure 6.15: Activity in the inferior frontal and parietal cortex related to 

representation of figures with different coherence levels during the early 

phase of the noise SFG stimulus.  

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. A small-

volume correction using a mask for IPS in the SPM Anatomy toolbox (Eickhoff et 

al., 2005) was used to obtain these results. The t-values for the significant voxels 

for each contrast are scaled according to the heat map on the right of each image. 

The t-values for the significant voxels for each contrast are scaled according to the 

heat map on the right of each image.  
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Figure 6.16: Activity in auditory cortex related to representation of figures 

with different coherence levels during the early phase of the noise SFG 

stimulus.  

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. The t-values 

for the significant voxels for each contrast are scaled according to the heat map on 

the right of each image. 
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Figure 6.17: Activity in IPS related to representation of figures with different 

coherence levels during the early phase of the noise SFG stimulus.  

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. A small-

volume correction using a mask for IPS in the SPM Anatomy toolbox (Eickhoff et 

al., 2005) was used to obtain these results. The t-values for the significant voxels 

for each contrast are scaled according to the heat map on the right of each image. 
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For the later sustained phase of the transition (900-1200ms following 

the transition), neither the ANOVA nor 2-samples t-tests revealed 

significant clusters of activity in the auditory or parietal cortex. Analysis for 

a main effect of each of the individual coherence levels revealed sources of 

activity in the auditory cortex as shown in figure 6.18 as well as the IPS as 

shown in figure 6.19. Interestingly, IPS was only activated in the coherent 

conditions with no activation in the control condition. The MNI coordinates 

of the sources for each of the above analyses are summarized in table 6.4. 
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Contrast Brain areas x y z t-value z-score 

COH8 

R HG 58 -6 10 5.96 4.42 

L HG -54 -16 4 7.03* 4.87* 

R IPS 50 -56 34 5.65* 4.28* 

L IPS -50 -52 38 3.92 3.32 

COH4 

R HG 50 -24  2 6.57* 4.69* 

L HG -56 -18  2 6.49 4.66 

R IPS 56 -52 30 4.51 3.68 

L IPS -50 -48 36 4.49 3.66 

COH2 

R HG 50 -24  2 7.35* 5.00* 

L HG -50 -24 14 6.40 4.62 

R IPS 56 -52 28 4.77 3.82 

L IPS -50 -48 36 4.66 3.76 

COH0 

R HG 60 -16  4 5.15 4.02 

L HG -56 -18  2 4.88 3.88 
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Table 6.4: MNI coordinates for reconstruction of evoked power in the late 

sustained phase of the noise SFG stimulus.  

Source coordinates of activity during the early phase of the transition (900-1200ms 

following transition) to a figure specifically in the auditory cortex and the IPS are 

shown for the different contrasts as indicated. Asterisk indicates statistical 

significant at p < 0.05 (FWE) whilst other results hold at p < 0.001 (uncorrected). 
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Figure 6.18: Activity in auditory cortex related to representation of figures 

with different coherence levels during the late phase of the noise SFG 

stimulus.  

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. The t-values 

for the significant voxels for each contrast are scaled according to the heat map on 

the right of each image. 
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Figure 6.19: Activity in IPS related to representation of figures with different 

coherence levels during the late phase of the noise SFG stimulus.  

Note that no activity in IPS was found for the transition to a background segment. 

Results are rendered on the coronal section of an average normalized brain 

template based on 152 T1 scans and shown at p < 0.001 uncorrected. A small-

volume correction using a mask for IPS in the SPM Anatomy toolbox (Eickhoff et 

al., 2005) was used to obtain these results. The t-values for the significant voxels 

for each contrast are scaled according to the heat map on the right of each image. 
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6.5 Discussion 

The MEG experiment was designed in order to obtain a complete 

picture of figure-ground analysis in the SFG stimulus. The psychophysics, 

modeling and fMRI results suggest that detection of target signals in the 

SFG stimulus depends on mechanisms that cannot be explained by models 

based on deterministic patterns based on sequences of tones (Fishman and 

Steinschneider, 2001; Micheyl et al., 2005, 2007a). The temporal coherence 

model of auditory scene analysis, on the other hand, provided a sound 

explanation for segregation in the complex SFG stimulus. The fMRI results 

provided an intriguing hypothesis for a role for the intraparietal sulcus in 

mediating or representing temporal coherence associated with the salient 

figures (Shamma et al., 2011). These set of results provided added stimulus 

to examine these hypotheses in further detail using MEG. Firstly, the aim 

was to investigate how segregation in the SFG stimulus builds up over time 

and whether the auditory cortex is involved in it or not, given the fact that 

there was no modulation of BOLD activity in the auditory cortex. Secondly, 

the fMRI results provided a strong spatial prior to investigate activity in the 

IPS specifically related to representation of temporal coherence.  

 The analysis of evoked field strengths revealed an interesting 

picture: a strong peak developed transiently after the transition with smaller 

latencies for more coherent figures, and was followed by a sustained 

component that persisted throughout the duration of the figure. This pattern 

of response was observed for each of the different coherence levels but their 

amplitude was graded according to the coherence. The effect of coherence 
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was found for all coherence levels (2, 4, and 8) for transitions in the basic 

stimulus but only for the more coherent signals (4, and 8) in the noise SFG 

stimulus. Thus, for both conditions, for which there was no difference in 

behavioral sensitivity to the figures (see chapter 3), the MEG evoked 

responses also show a similar profile, suggesting a common neuronal basis 

for segregation of the figure in both types of signals. However, one caveat is 

that the post-transition segment was associated with more spectral energy 

than the pre-transition figure segment and the evoked responses thus cannot 

be considered purely perceptual responses. Still, the responses across the 

different coherence levels (matched for intensity) show differential scaling 

according to the perceptual salience of the figure segments. 

These data suggest that the underlying sources are sensitive to the 

salience of the figure, which is not based on differences in intensity as the 

power associated with the post-transition figure segments was balanced. 

These responses were based on sensors in the auditory cortex that are most 

selective to sound onset (see section 6.2.4). Thus, time-locked activity in the 

auditory cortex shows sensitivity to the onset of coherent figures and also 

mediates sustained perceptual representation of the figure. The role of the 

auditory cortex is discussed in greater detail in the next section. 

 Another result that deserves attention is the correspondence between 

the latencies at which the evoked field strengths become significantly 

different from baseline and the duration of the corresponding figure that can 

be reliably discriminated. In the psychophysical experiments, listeners were 

encouraged to press a button as soon as they detected a figure and the 
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reaction times could thus be smaller than the duration of the figure. The 

analysis of the MEG evoked field latencies suggest that in passive 

conditions, the brain needs at least the time equal to the duration of the 

figure to respond to their emergence from the background. It is likely that in 

active task conditions, the MEG latencies might be smaller than in passive 

conditions and mirror behavioural reaction times more accurately.   

6.5.1 Role of auditory cortex and IPS revisited 

The results from source reconstruction of the early and the late phase 

of the transition for both the basic and the noise stimuli revealed activations 

in the auditory cortex including STS as well as the IPS. Different statistical 

tests were performed on the 3D images obtained from the inverse 

reconstruction to examine areas that: i) represent coherence, and ii) 

represent difference in coherence.  

 For the early phase of the basic stimulus, the right auditory cortex 

was found to represent the difference in the coherence between figures with 

coherence of 8 vs. each of the lower coherence levels respectively. 

However, the auditory cortex was activated bilaterally for the representation 

of coherence as a main effect for each of the coherence levels including the 

ground condition. Similar effects were found for the same contrast in the 

IPS as well, following a small-volume correction at a significance threshold 

of p < 0.001 (uncorrected). In the later phase, similar results were obtained 

as a function of both contrasts in the auditory cortex but interestingly, the 

IPS was additionally activated for the representation of the perceptual 

salience of the figures, i.e. it was found to represent the difference in 
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coherence between figures. Overall, these data suggest that the auditory 

cortex is sensitive to the onset of coherent segments and also represents 

coherence (or temporal coherence). The IPS on the other hand, shows a 

differential pattern of response: it represents the difference in coherence 

only in the later sustained phase of the transition (together with the auditory 

cortex). This evidence points towards a possible hierarchy of processing the 

transition from background to figure: the auditory cortex may be involved in 

initial encoding of the figures and the IPS may be additionally recruited in 

the perceptual representation of the figure.  

 The source reconstruction results for the early phase of the noise 

stimulus revealed modulation of the left inferior frontal gyrus (IFG) and IPS 

as a function of difference in coherence. Contrary to the results from the 

early phase of the basic stimulus, no activation in the auditory cortex was 

found. The activity in the fronto-parietal cortex may reflect greater top-

down drive to segregate the figure chords interspersed by white noise. On 

the other hand, auditory cortex along with the IPS was activated as a 

function of discrete coherence levels. For the source modeling of the late 

phase, however, although auditory cortex and IPS were involved in 

representing the coherence levels (2, 4, and 8) there was no activity 

associated with IPS for the ground condition. These set of results suggest a 

mechanism based in the temporal and fronto-parietal cortex that is related to 

encoding the figures. However, the role of the auditory cortex in perceptual 

representation of the figures in the noise stimulus was not substantiated to 

the same extent as in the case for the basic stimulus. This could be due to 
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the masking effects of the noise segments whereby detection of the 

embedded figures relies more on top-down mechanisms in the fronto-

parietal cortex.  

The activation of auditory cortex in the MEG compared to the lack 

of activation in the fMRI study may be due to differences in the stimulus 

paradigm, background acoustic environment (continuous scanning in MRI 

vs. quiet conditions in MEG) or the temporal resolution of the measurement 

technique. The BOLD response may not have adequately capture time-

locked activity in the auditory cortex.  

 In other MEG paradigms based on IM stimuli, activity in the 

auditory cortex has been demonstrated (Gutschalk et al., 2008; Elhilali et al., 

2009b; Wiegand and Gustschalk, 2012). Gutschalk and colleagues (2008) 

uncovered a response termed as the awareness related negativity (ARN) 

specifically for detected target tones with no activation for the undetected 

targets in the auditory cortex. In a more recent IM experiment, Wiegand and 

Gutschalk (2012) found BOLD activity in the medial Heschl’s gyrus as a 

function of detected vs. undetected targets. They also carried out MEG 

recordings and found an ARN response similar to the previous study 

(Gutschalk et al., 2008). The analysis of the fMRI data, however, was 

limited only to HG, PT and STG and did not focus on areas outside the 

temporal lobe. These results offer impetus for an active figure-detection task 

based on the SFG stimulus and to examine whether ARN is elicited in the 

auditory cortex as well as the IPS.  
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6.5.2 Temporal coherence 

As demonstrated in chapters 3 and 4, the onset of the figure in the 

SFG stimulus is associated with an increase in temporal coherence. 

According to the model of Shamma and colleagues (2011), coherence 

between different frequency channels can temporally bind these channels 

together and assign them as belonging to one source or representing a 

separate object distinct from the background with uncorrelated elements. In 

the context of this model, the present stimulus design results in an increase 

in temporal coherence after the transition to the coherent figure segment. 

Modeling results (see section 4.4) suggest temporal coherence as a plausible 

mechanism in the detection of the figure based on coherent elements in a 

background of incoherent elements. Another aspect of the model is that it is 

based on stimulus-driven, phase-locked activity between distinct set of 

neuronal populations that code for the feature of interest (here, frequency). 

Thus, source reconstruction based on evoked power in the post-transition 

segment may reflect sources that compute or represent temporal coherence.  

As described in the previous section, the auditory cortex and the IPS 

were found to be activated during the figure segment and encoded 

coherence as well as difference in coherence. In the basic stimulus, 

however, the IPS was found to be activated during the sustained phase 

rather than the early encoding phase suggesting that it may be involved 

exclusively in the representation of temporal coherence that may be 

processed in the auditory cortex and fed forward to higher centres in the 

parietal (or frontal) cortices. These results provide a basis to consider a 
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hierarchical network in the processing of novel salient sounds in the 

acoustic environment based on predictive coding mechanisms. This account 

holds that the brain is constantly trying to predict sensory input and 

generates prediction errors when the incoming input does not match 

predictions based on long-term templates formed on the basis of exposure to 

the environment (Friston, 2005). In this model, regions that are placed lower 

in the hierarchy are specifically involved in processing prediction errors 

generated by the mismatch between the predictions derived from higher 

centres and the incoming sensory information. In this context, one may 

speculate that the IPS represents a higher node in this hierarchical 

processing system that signals (and represents) a change in the acoustic 

environment based on low-level stimulus processing in the auditory cortex. 

Although predictive coding has been shown to be relevant for mediating the 

MMN response (Garrido et al., 2009) and multistability in the streaming 

signal (Winkler et al., 2012; Mill et al., 2013), whether it applies to 

detection of changes in complex acoustic scenes and its relationship with the 

temporal coherence model remains to be investigated.  

6.5.3 Limitations 

The purpose of the MEG study was to examine stimulus-driven or 

bottom-up segregation in the absence of directed attention to the stimulus. 

Listeners’ were kept naïve regarding the SFG stimuli and focused on a 

visual task. However, the visual task was quite easy to perform and may not 

have taxed their attentional resources much. It is also possible that listeners 

may briefly focus on the sounds whilst performing the incidental visual task. 
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These potential confounds limit the explanation of a purely passive account 

of segregation. However, listeners did not report any particular interest in 

the sound stimulation at the end of the experiment.  

These results suggest the basis for a pre-attentive mechanism that is 

sensitive to temporal correlations across frequency channels in accordance 

with the temporal coherence model. Further work is required to elucidate the 

specific role of attention in an active task paradigm, for instance, by 

manipulating the attentional load or difficulty of an unrelated visual or 

auditory task. It is also possible that non time-locked activity in auditory and 

parietal cortices is crucial and ongoing frequency-time analysis and 

localization of induced power may shed further insights into the processing 

of salient figures in a random background.  
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Chapter 7. GENERAL DISCUSSION 

This thesis examined the brain bases of auditory segregation based on 

a novel stochastic signal, referred to as the stochastic figure-ground (SFG) 

stimulus. The problem of how a natural scene is parsed into its constituent 

components, i.e. individual objects for subsequent processing and perceptual 

representation is a fundamental problem in neuroscience. Visual and 

auditory scenes comprise multiple objects, and objects of interest need to be 

encoded as a coherent whole that is distinct from other objects in the 

background. Encoding of an object may be based on a number of grouping 

mechanisms that operate on certain attributes of the object, for instance, 

grouping based on luminance in vision or grouping on the basis of 

frequency in audition. The Gestalt psychologists examined a number of such 

principles of binding such as common fate, collinearity, good continuation, 

symmetry and convexity which were originally examined in the context of 

visual binding but have also constructively influenced the principles of 

grouping in audition (Bregman, 1990; Denham and Winkler, 2013). 

Bregman proposed principles of auditory perceptual organization 

based on the analysis of simple deterministic sequences of alternating low 

and high frequency tones, known as the streaming signal (Bregman and 

Campbell, 1971; van Noorden, 1975). A number of fundamental principles 

of auditory scene analysis have been uncovered based on psychophysical 

and physiological examination of responses to these stimuli (Bregman, 

1990; Carlyon, 2004; Fishman et al., 2001; Micheyl et al., 2007a; Denham 

and Winkler, 2013). In the following section, the relative merits and 
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limitations of the different signals used to study segregation are discussed, 

leading to the motivation for the development of stochastic stimuli like the 

SFG stimulus.  

7.1 Stimuli for studying auditory segregation 

A typical biological entity has to deal with a plethora of sensory inputs 

that occur in a random, unpredictable manner. Moreover, such signals are 

often contaminated with noise which renders the problem of accurate 

perception more challenging, necessitating robust neural encoding 

mechanisms. Another aspect of the nature of sensory stimulation can be 

understood in the context of information theory: deterministic signals 

convey less information, whilst stochastic signals convey more information 

and more effectively engage the neural machinery underlying perception. 

Signals used in auditory scene analysis research can thus be classified 

accordingly as deterministic or stochastic stimuli.  

Deterministic signals used to investigate auditory segregation include 

streaming signals (van Noorden, 1975; Bregman, 1990), sequences of tones 

based on the phenomenon of informational masking (Neff and Green, 1987), 

or oddball stimulus patterns (Näätänen et al., 2007). These stimuli are 

discussed in detail in section 1.4. In spite of their usefulness, they are 

characterized by certain features that constrain their utility in understanding 

auditory perception as occurs in the natural world. These signals share a few 

limitations: they have a deterministic temporal structure; contain 

narrowband target signals; the foreground and background streams are 

usually non-overlapping and out of phase; and, the target signals are often 
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separated by a band-stop region with little energy. These features are not 

representative of signals in the natural environment characterized by 

multiple, overlapping channels with stochastic temporal structures. These 

signals, to their advantage, offer a simplistic approach with flexible control 

of stimulus parameters that enables systematic analysis of neural responses 

to specific acoustic attributes.  

The aim of this thesis was to understand segregation mechanisms that 

operate in realistic auditory environments. To overcome the limitations 

posed by the conventional stimulus paradigms as discussed above, a novel 

signal with a stochastic spectrotemporal structure was developed. The SFG 

stimulus is conceptually similar to the visual coherent dots motion paradigm 

(Shadlen and Newsome, 1996) which involves manipulation of the direction 

of motion of certain dots that form the “figure” against the backdrop of 

other dots which move in random directions that comprise the “ground”. 

The SFG signal is based on a similar approach: the figure was based on 

coherence in time, i.e., it was comprised of a few channels that repeated 

synchronously whilst the remaining frequency channels were characterized 

with random fluctuation patterns. Unlike other tonal sequences, the figure in 

the SFG stimulus was indistinguishable at each moment in time and could 

only be extracted by integrating across both frequency and time. This also 

negated the use of selective attention to follow the target stream and extract 

it from the background. Moreover, the pattern of the figure, i.e., its 

spectrotemporal properties varied from trial to trial and required robust 

integration across both spectral and temporal dimensions to detect the 
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figure. These differences highlight the significance of the SFG stimulus for 

characterizing naturalistic auditory segregation behaviour. 

Chapter 3 reports a number of psychophysical experiments that 

examined listener’s segregation performance in the SFG stimulus. The basic 

experimental paradigm required listeners to detect brief figures (duration 

ranging from 100 – 350ms) with varying number of temporally correlated 

channels (defined as the ‘coherence’: 1, 2, 4, 6, or 8). Sensitivity or d’ was 

measured as a function of both these factors and was found to increase 

monotonically with increasing duration and the coherence of the signal. 

Furthermore, figure-ground discrimination abilities were quite robust: 

listeners could successfully detect coherent patterns as brief as a few 

hundred milliseconds (maximum duration of figure was 350ms). 

Segregation in streaming stimuli, on the other hand, builds up over a couple 

of seconds (Anstis and Saida, 1985). This suggests the existence of a highly 

tuned bottom-up segregation mechanism that is sensitive to the salience of 

brief figures.  

Additional experiments reported in chapter 3 manipulated the 

spectrotemporal structure of the figure and examined the sensitivity of the 

listeners to the modified figure patterns. In spite of changes in the temporal 

structure (speeding up of the stimulus in experiment 3), spectral shape of the 

figures (ramped vs. linear figure patterns in experiments 4a and 4b), changes 

in the stimulus pattern (isolated presentation of figures without the 

preceding and succeeding chords in experiment 5), and introduction of 

masking noise between successive chords (experiments 6a and 6b), figure-



312 

 

detection performance was mostly unaffected in comparison to experiment 1 

(except for a slight drop in performance for experiments 4a and 4b). These 

data suggest that the “pop-out” of these salient figures may be mediated by a 

robust, bottom-up, stimulus-driven mechanism. The figure patterns are 

characterized by correlations in frequency and time and implicate a 

mechanism that computes such correlations in complex stimulus patterns.  

Irrespective of the nature of stimuli used in auditory scene analysis, 

the goal of the auditory neuroscientist is to answer the question – “What in 

neural terms, corresponds to the final representation of what we hear?” 

Treisman (1999) explored the nature of this question in vision and 

proposed an important role for temporal coding mechanisms. In the 

following section, this proposal is examined in the case of vision as well as 

audition, with specific examination of the temporal coherence model of 

auditory scene analysis. 

7.2 Role of temporal structure in binding 

Standard models of segmentation in vision and audition place great 

emphasis on the role of the spatial and spectral structure respectively. 

Differences in spatial location and spectral profiles provide strong cues to 

parsing the visual and acoustic scene respectively. However, recent work 

has explored the role of temporal structure in binding in vision (Treisman, 

1999; Blake and Lee, 2005) and audition (Elhilali et al., 2009a; Shamma et 

al., 2011, 2013) which is discussed in this section.  
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In vision, grouping principles focus on features that are defined in 

terms of spatial discontinuities in luminance, colour, or texture that 

constitute what is referred to as spatial structure (Blake and Lee, 2005). 

Spatial cues help define edges and borders between objects in the visual 

scene that represent static cues for segregation. However, it is evident that 

the visual world is highly dynamic, characterized by the movement of 

objects and observers. Thus, it is useful to consider visual segmentation as a 

more complicated process that must also integrate dynamic cues for parsing. 

This was conceptualized by the Gestalt psychologists as grouping by 

common fate. This principle encapsulates the importance of temporal 

structure and has been demonstrated to be an important grouping factor in 

several studies of visual segmentation (reviewed by Blake and Lee, 2005). 

The role of temporal structure in visual grouping is considered to be 

complementary to the role of spatial structure, and when these two 

structures are in conflict, the relative salience of the two cues determines the 

final outcome of the grouping process (Blake and Lee, 2005).  

Similarly, the Gestalt principle of common fate has also been 

employed by auditory scientists in the perceptual analysis of acoustic scenes 

(van Noorden, 1975; Bregman, 1990). Sounds that start and stop together 

are said to share a common fate and can be attributed to the same acoustic 

source. A source of sound is associated with several spectrotemporal 

properties such as pitch, and intensity that co-vary together in time, and this 

temporal feature can be exploited for segregation. The most commonly 

accepted models of stream segregation, however, attribute a predominant 
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role to spectral structure: differences in frequency between two streams 

promote the activation of distinct populations of neurons in the auditory 

cortex that corresponds to the perceptual representation of the streams 

(Fishman et al., 2001; Micheyl et al., 2005, 2007b). Studies in macaques, 

songbirds, guinea pigs and humans demonstrate this phenomenon at 

different levels of the auditory pathway from the cochlea to the cortex 

(Fishman et al., 2001, 2004; Bee and Klump, 2004, 2005; Micheyl et al., 

2005; Gutschalk et al., 2005, 2007; Wilson et al., 2007; Pressnitzer et al., 

2008). This ‘population-separation’ model of segregation can explain the 

classical streaming effect but is not sufficient to explain segregation in more 

complicated stimulus patterns with multiple, overlapping frequency 

components.  

Elhilali and colleagues (2009a) demonstrated the shortcomings of the 

population-separation model by showing that alternating and synchronous 

patterns of tones produce the same response profiles in the auditory cortex 

although they have different perceptual signatures: the alternating sequence 

of tones is perceived as two streams whilst the synchronous sequence of 

tones is perceived as a single stream. These findings suggest the importance 

of temporal structure in auditory segregation: sound elements with high 

temporal coherence may be grouped as one stream whilst elements with low 

coherence are perceived as separate streams (Shamma et al., 2011). This 

model of segregation is known as the ‘temporal coherence’ model and 

stresses the importance of temporal features in addition to spectral features 

in determining the perceptual representation of sound scenes. The features 
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of the model are discussed in detail in section 4.2: its main advantages being 

that it can be applied even in the case of complex stimuli with multiple 

overlapping frequencies such as the SFG stimuli. Indeed, modeling of the 

SFG stimuli revealed patterns of temporal coherence that mirrored the 

behavioural figure-detection responses (see Figure 4.4). The modeling 

simulations suggest that the SFG figure patterns show strong temporal 

coherence which may drive the segregation of these figures.  

The temporal coherence model presents a strong case for segregation 

of stimuli that share temporal dependencies. However, whether the model 

applies in case of stimuli associated with bistable perception remains an 

open question. Furthermore, although the experimental results provide a 

counter-argument against population-separation models of segregation, the 

neurophysiological bases of temporal coherence computations are yet to be 

determined. How does the brain compute temporal relationship amongst 

spatially distributed neuronal ensembles that encode different acoustic 

features? Until these questions are resolved, the temporal coherence model 

remains incomplete. The following section discusses the neural substrates of 

auditory segregation and temporal coherence in more detail.  

7.3 Neural substrates of auditory segregation 

Models of stream segregation suggest that physiological properties of 

auditory cortical neurons such as frequency selectivity (and tonotopic 

organization of the auditory system), adaptation and forward masking result 

in the activation of spatially segregated populations of neurons that encode 

different streams. Recordings from the auditory cortex in macaques 
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(Fishman et al., 2001, 2004) first revealed these features which were later 

confirmed in songbirds as well (Bee and Klump, 2004, 2005). Several lines 

of evidence including functional imaging studies in humans showed that 

auditory segregation occurs along distributed centres of the ascending 

auditory pathway including the cochlea (Pressnitzer et al., 2008), the 

thalamus (Kondo and Kashino, 2009, 2012), the primary and non-primary 

auditory cortex (Deike et al., 2004, 2010; Gutschalk et al., 2005, 2007; 

Wilson et al., 2007; Dysktra et al., 2011; Ding and Simon, 2012; Mesgarani 

and Chang, 2012; Zion-Golumbic et al., 2013) as well as the parietal cortex 

(Cusack, 2005; Hill et al., 2011).  

A majority of these studies were based on stimuli with no temporal 

correlations amongst its components and thus the implicated structures 

cannot be said to reflect processing or representation of temporal coherence. 

Temporal coherence may be encoded at the level of the auditory cortex 

although Elhilali and colleagues (2009a) did not find single-unit evidence 

supporting this hypothesis. It is possible that ensembles of neurons compute 

coherence within the cortex or in higher-order auditory-related areas such as 

the parietal or frontal cortex. The data from the fMRI study reported in 

chapter 5 suggest that the IPS may represent the locus of temporal 

coherence analysis. BOLD activity in the IPS most strongly co-varied with 

the salience of the figure which was shown to be correlated to temporal 

coherence in the modeling simulations shown in chapter 4. The fMRI data, 

however, cannot specifically resolve whether coherence is encoded at the 

level of the IPS directly or after encoding at the level of the auditory cortex. 
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The latter represents a significant possibility as the IPS is in receipt of 

anatomical projects from the auditory cortical areas (Cohen, 2009) and is 

also a locus of selective attention (Cusack, 2005; Fritz et al., 2007) as well 

as auditory spatial attention (Lee et al., 2013).  

The MEG data, reported in chapter 6, provide evidence for a role for 

the sustained representation of temporal coherence in the IPS after initial 

encoding in the auditory cortex. Temporal coherence reflects a phase-locked 

operation and reconstruction of phase-locked evoked power after the 

transition to a figure segment revealed clusters of activity in the IPS along 

with the auditory cortex including STS. Furthermore, the representation of 

temporal coherence was found to scale with the coherence of the figure in a 

manner that is consistent with the effects of coherence on behaviour as well 

as the modeling response curves. Activity in the parietal (as well as frontal) 

cortex appeared to be more relevant for encoding of figures that were 

embedded in alternating white noise segments. Together, the fMRI and 

MEG data suggest that both the auditory and parietal cortices may be 

involved in the analysis of temporal coherence. Although the MEG data 

suggest that activation of auditory and parietal cortex becomes stronger over 

time, the exact temporal relationship and causal interplay between these 

areas remains to be determined.  

In terms of the underlying neural coding schemes, two basic 

mechanisms are relevant: rate coding (Barlow, 1972; Shadlen and 

Newsome, 1994) and temporal correlation (Abeles, 1982; Mainen and 

Sejnowski, 1995). Rate coding schemes propose that information is 
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conveyed by the average firing rates of neurons. It is unlikely, however, that 

the firing of single neurons can capture the fine temporal structure of 

dynamic stimuli, as information about the timings of individual spikes is not 

retained in the average rate code. However, the firing rate of an ensemble of 

neurons may fluctuate in a time-locked manner to time-varying stimuli with 

high precision (Shadlen and Newsome, 1994). The temporal correlation 

hypothesis, on the other hand, suggests that information is conveyed in the 

timing of individual spikes. The spiking activity between separate groups of 

neurons may be synchronized in a stimulus-locked fashion. In human vision, 

both coding schemes are considered to be able to explain its temporal acuity 

(Blake and Lee, 2005) but whether the same applies in the case of audition 

remains to be investigated in greater detail.   

7.4 Future directions for research  

A feature of the functional imaging studies examined in this thesis is 

that they examined figure-ground discrimination in passive listening 

paradigms. Although this allowed an examination of bottom-up, stimulus-

driven mechanisms that mediate the pop-out of the salient figures, the 

influence of attention on behaviour and the underlying neural responses 

could not be assessed. Attentional state modulates sensory responses in the 

auditory cortex (Fritz et al., 2007) and can also bias selection of particular 

acoustic features that bind other temporally correlated features belonging to 

the same object (Shamma et al., 2011). Analysis of active figure-ground 

discrimination may further help to disentangle the specific roles of higher-

order areas such as the parietal or prefrontal cortex in auditory segregation.  
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Although both the fMRI and MEG experiments revealed activations in 

IPS related to figure-ground processing, a causal role for IPS is yet to be 

established. This may be achieved by the use of transcranial magnetic 

stimulation (TMS) to selectively disrupt neuronal processing in the area and 

examine segregation performance before and after creating virtual lesions in 

the IPS (e.g., Kanai et al., 2008).  

A prominent feature of the streaming paradigm is the phenomenon of 

bistability that allows an investigation of perceptual responses in the 

absence of corresponding physical changes. The frequency separation and 

tone presentation rate can be modified to produce a bistable percept that 

switches between that of one stream to two streams (van Noorden, 1975; 

Pressnitzer and Hupe, 2006). It remains to be explored whether similar 

bistability can be achieved in the SFG stimulus: alternating chords could 

comprise different repeating frequencies to form two sets of competing 

figures that vie for perceptual dominance.  

Another unresolved question that merits attention is the brain basis of 

temporal coherence analysis as discussed in the previous section. 

Unraveling the precise structural and functional bases of temporal coherence 

computations would help to elucidate the neural architecture of auditory 

segregation in complex scenes as investigated here. The use of SFG 

stimulus in neurophysiological experiments in behaving animals such as 

ferrets represents a promising approach in this vein (Shamma et al., 2013). 
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Another question that deserves further investigation in the auditory 

perception literature is the relationship between perceptual performance on 

an auditory task and structural features (e.g. surface area, or grey matter 

volume) of relevant areas such as the auditory (or parietal) cortex. It has 

been demonstrated the surface area of the primary visual cortex predicts 

variability in conscious visual experience (Schwarzkopf et al., 2011). In 

multistability, perceptual fluctuation rates may be constant for a certain 

individual but vary considerably across individuals. In vision, 

neuroanatomical substrates for individual variability in spontaneous 

switching behaviour have been identified in the parietal cortex 

(Kleinschmidt et al., 2012), but similar assessment of individual differences 

in auditory multistable phenomena is lacking.  Thus, the structural basis of 

inter-individual differences in target detection for the streaming as well as 

SFG paradigms may offer new insights linking behaviour and cognition to 

anatomy (Kanai and Rees, 2011).  

Recently, a theory of brain function based on predictive coding (Rao 

and Ballard, 1999; Friston, 2005) has become a prominent model of human 

behaviour and cognition. In the specific case of audition, predictive coding 

accounts for the MMN response (Garrido et al., 2009), pitch perception 

(Kumar et al., 2011), as well as multistability in auditory stream segregation 

(Winkler et al., 2012) have been proposed. A recent study on bistable visual 

perception demonstrated modulation of top-down connectivity from the 

fronto-parietal to visual cortex during perceptual transitions using dynamic 

causal modeling of BOLD data (Weilnhammer et al., 2013). This work 
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represents another direction, embedded in the predictive coding framework, 

to investigate functional interactions and causal interplay between fronto-

parietal cortex and auditory cortex in auditory bistable phenomena in 

particular, and auditory perceptual organization, in general. 
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