A network analysis of speech perception in normals and aphasic stroke patients using Dynamic Causal Modeling

1 Wellcome Trust Centre for Neuroimaging, University College London, UK ${ }^{2}$ Institute of Neuroscience, Newcastle University Medical School, UK Institute of Cognitive Neuroscience, University College London, UK

Speech perception

- Speech perception is mediated by a bilateral network of interacting sources in primary auditory cortex (A1) and secondary auditory cortex in posterior superior temporal gyrus (STG).

Aphasics

- 25 aphasics with chronic auditory comprehension deficits caused by left hemisphere stroke.
- Patients' lesion overlap map:

Wernicke's area

Vowel Mismatch Paradigm

Vowel Stimulus	Percept	Vowes	Formant Frequencies$\mathrm{F} 1(\mathrm{~Hz}) \quad \mathrm{F}(\mathrm{Hz})$		Distance from Standard (ERB)
STD	"Bart"		628	1014	0
		nim			
D1	"Bart"		565	1144	1.16
D2	"Burt"		507	1287	2.32
D3	"Beat"	\%exay	237	2522	9.30

Stimuli: CVC words with different frequencies of F1 and F2 formants D1: acoustic deviant (within same vowel category) D2 and D3: phonemic deviants (perceived as different vowel type)

Source-space MMF amplitudes (nA)

DCM of deviant responses

- Models: 12 connections between A1 and STG were modelled, yielding 255 models for each participant.

- Aim: To investigate modulation of these connections for the phonemic contrast: (D3 and D2) vs. D1

DCM Results

CONTROLS

APHASICS with LH Stroke

- Aphasics lack modulated self-connections in left A1 and STG
- Aphasics show increased modulation of forward connections from A1 to STG, i.e., from lower to higher level of the hierarchy.
- Predictive coding theory: Greater prediction error is passed from lower level to higher levels of the speech network in aphasics.

