

A network analysis of speech perception in normals and aphasic stroke patients using Dynamic Causal Modeling

(poster #)

Wellcome Trust Centre for Neuroimaging, University College London, UK
Institute of Neuroscience, Newcastle University Medical School, UK
Institute of Cognitive Neuroscience, University College London, UK

Speech perception

 Speech perception is mediated by a bilateral network of interacting sources in primary auditory cortex (A1) and secondary auditory cortex in posterior superior temporal gyrus (STG).

Aphasics

- 25 aphasics with chronic auditory comprehension deficits caused by left hemisphere stroke.
- Patients' lesion overlap map:

Vowel Mismatch Paradigm

Stimuli:CVC words with different frequencies of F1 and F2 formantsD1:acoustic deviantD2 and D3:phonemic deviants(perceived as different vowel type)

Source-space MMF amplitudes

DCM of deviant responses

• **Models:** 12 connections between A1 and STG were modelled, yielding 255 models for each participant.

• Aim: To investigate modulation of these connections for the phonemic contrast: (D3 and D2) vs. D1

DCM Results

- Aphasics lack modulated self-connections in left A1 and STG
- Aphasics show increased modulation of forward connections from A1 to STG, i.e., from lower to higher level of the hierarchy.
- Predictive coding theory: Greater prediction error is passed from lower level to higher levels of the speech network in aphasics.