

A network analysis of phonemic perception in patients with persisting aphasia using Dynamic Causal Modeling

Auditory Group (PI: Tim Griffiths)
Wellcome Trust Centre for Neuroimaging

Acknowledgments

Alex Leff

Gareth Barnes

Will Penny

Paul Iverson

Zoe Woodhead

Tim Griffiths

Take-home message

- Aphasics do show robust speech mismatch responses.
- MEG source-space responses indicative of reorganization from left to right hemisphere in aphasics.
- DCM analysis of MEG data suggests distinct speech networks for aphasics vs. controls.
- Speech comprehension deficits in aphasics can be explained by a predictive coding theory of brain function (cf. Friston).
- Left-STG => Right-STG connection strength in aphasics predicts behaviour on phonemic perception tests.

Aphasia

Aphasia & MMN

Aaltonen et al., 1993

Stimuli

Vowel Stimulus	Percept	Vowels		requencies	Distance from
STD	"Bart"	Time 0.5	F1 (Hz) 628	F2 (Hz) 1014	Standard (ERB)
D1	"Bart"		565	1144	1.16
D2	"Burt"		507	1287	2.32
D3	"Beat"		237	2522	9.30

D1:

D2 & D3:

acoustic deviant (same vowel category)
phonemic deviants (different vowel type)

D2&D3 vs. D1: phonemic contrast

MEG

• Fs
$$= 480 \text{ Hz}$$

- STD:DEV = 4:1, \sim 60dbSPL
- # Deviants = 120 x 3
- Concurrent visual task

- Best model: 4 sources
 bilateral A1 & STG
- Aphasics sources constrained by lesion topography

Kiebel et al., 2008

Source-space MMN responses

MMN amplitude

MMN latency

DCM for evoked MEG

Neural mass model

Jansen and Rit, 1995 Felleman & Van Essen, 1991

DCM analysis

Predictive coding: (Kiebel & Friston, 2009)
 Prediction error = Predictions - Sensory input

Self-connections:

sensitivity or precision of neural response to sensory input

Forward connections:

bottom-up propagation of prediction error from lower to higher level of the hierarchical system

Backward connections:

top-down predictions from higher to lower levels.

DCM analysis

Aim: To investigate modulation of the connections as a function of phonemic deviancy: (D3 & D2) vs. D1

Models: 12 connections between A1 and STG were modelled, yielding 255 models for each participant.

Hypotheses: aphasics may show deficits at the higher level of the network (STG) and impaired left hemisphere function.

A CONTROLS

C CONTROLS vs. APHASICS

Summary

- Aphasics do show robust speech mismatch responses.
- MEG source-space responses indicative of reorganization from left to right hemisphere in aphasics.
- DCM analysis of MEG data suggests distinct speech networks for aphasics vs. controls.
- Speech comprehension deficits in aphasics can be explained by a predictive coding theory of brain function (cf. Friston).
- Phonemic prediction errors and prediction signals may have different oscillatory signatures (cf. Poeppel/Giraud)
- Next: longitudinal analysis following drug/phonological therapy