Sundeep Teki ^{1,2} Maria Chait ³, Sukhbinder Kumar ^{1,2} Katharina von Kreigstein ⁴, Tim Griffiths ^{1,2}

BRAIN BASES FOR AUDITORY STIMULUS-DRIVEN FIGURE-GROUND SEGREGATION

- ¹ Newcastle Auditory Group, Newcastle University Medical School, UK
- Wellcome Trust Centre for Neuroimaging, University College London, UK
- ³ UCL Ear Institute, University College London, UK
 - 4 Max Planck Institute for Human Cognitive and Brain Science, Germany

Auditory figure-ground segregation

Listeners' ability to extract a particular sound from a background of other simultaneous sounds

Processes:

- grouping of simultaneous figure components from the spectral array,
- ii. grouping of figure components over time,
- iii. separation of grouped components from rest of the acoustic scene.

Neural Substrates:

Distributed network: auditory periphery, medial geniculate body, primary auditory cortex to non-primary auditory areas

Stimuli:

Streaming stimuli: alternating sequence of low and high frequency tones

- lack the rich spectrotemporal complexity of natural sounds.

Stochastic Figure-Ground (SFG) stimulus

SFG: Stimulus design

Stimulus:

Sequence of random chords consisting of pure tone components

Duration of each chord: 50 ms

Inter-chord interval: 0 ms

Total stimulus duration: 2000 ms (40 consecutive chords)

Chords:

No. of pure tone components: 5-15

Component frequency range: 179 – 7246 Hz

Cosine ramp: 10 ms for onset and offset

SFG: Figure present

SFG: Figure

Coherence: Number of different repeating frequencies: 1,2,4,6,8

Duration: Number of chords over which frequencies repeat: 2-7

Features of SFG:

- Figure and background signals do not differ in low-level acoustic attributes
- No spectral 'protective' region between figure and background
- Figure and background signals are indistinguishable at each point in time
- Figure can only be extracted by integrating over time and frequency
- Enables parametric variation of figure salience

Psychophysics (n = 10)

- > Listeners are remarkably sensitive to the appearance of figures
 - > Sensitive to parametric variations of coherence and duration

Psychophysics II (n = 10)

fMRI Experiment

Identify brain areas whose activity varies with parametric Aim: variations in coherence and duration of the figure

- Stimulus: i. Fixed coherence: 4, varying duration: 2-7 chords
 - ii. Fixed duration: 4, varying coherence: 1,2,4,6,8
 - = 9 stimulus conditions (40 repetitions each)

- Paradigm: i. Passive listening
 - ii. Active figure-detection

fMRI Paradigm

- Figure (fixed coherence)
- Background

Figure (fixed duration)

Task: Detect decoy stimuli (noise bursts; 10% of stimuli)

> Subjects not actively detecting figures

- 3 Tesla Siemens Allegra MRI Scanner
- Continuous scanning
- 42 contiguous slices per volume
- TR: 2.52 s; TA: 2.88 s; TE: 30 ms
- Slice thickness: 2 mm with 1mm gap between slices
- In-plane resolution: 3.0 x 3.0 mm²
- 3 scanning sessions: 510 volumes per subject

Behaviour in scanner

fMRI Analysis

- 14 subjects (normal hearing, no audiological disorders)
- Standard pre-processing with SPM8
- Whole brain analysis
- Statistical model based on General Linear Model
- Random effects design

- Parametric Modulation
 - **I. Effect of Duration:** Fixed coherence (4); varying duration (2-7)
 - II. Effect of Coherence: Fixed duration (4); varying coherence (1,2,4,6,8)

fMRI Results

I. Effects of Duration:

Intraparietal Sulcus (IPS) (bilateral; anterior)

Superior Temporal Sulcus (STS) (bilateral)

Planum Temporale (R)

Medial Geniculate Body (MGB) (bilateral)

Effects of Duration

fMRI Results

II. Effects of Coherence:

Intraparietal Sulcus (bilateral; posterior)

Superior Temporal Sulcus (bilateral)

Effects of Coherence

What about the auditory cortex?

- No activation in Primary Auditory Cortex (PAC) for either contrast
- Confirmed using volume of interest analysis based on PAC maps (Morosan et al., 01)
- Consistent with one previous fMRI study (Cusack, 2005)

Reasons...

- More complex and naturalistic stimulus
- Naïve subjects and short figures
- PAC recruited during active figure-ground segregation (i.e., in behavioural context)
 with possibly top-down modulation by IPS?

Role of STS

- STS activity modulated by changing duration and coherence of the figure
- Implicated in:
 - analysis of spectral shape

(Warren et al., 2005)

- dynamic changes in spectrum

(Overath et al., 2008)

- detection of increasing changes in spectrotemporal coherence within textures

(Overath et al., 2010)

IPS and Perceptual Organization

Role of IPS consistent with Cusack (2005):

- Implicated IPS in perception of two streams vs. one stream, based on the same physical streaming signal that evoked a bistable percept.
- IPS activity likely reflects top-down application of attention (shift between streams)
- Found no activation in primary auditory cortex

IPS is involved in structuring sensory input and perceptual organization:

- Encoding visual object representations
- Binding of sensory features within and across different modalities
- control and shift of auditory attention

What does the IPS activity reflect?

>automatic, bottom-up segregation of auditory object from stochastic background

Summary

SFG stimulus

- More representative of the natural complexity of acoustic scenes
- Figure can only be extracted by integrating over frequency-time space
- Shorter build up time (~300ms; compared to ~2s for streaming stimuli)
- Enables parametric approach to study auditory figure-ground segregation

Substrates

- IPS and STS: pre-attentive, stimulus-driven, bottom-up segregation
- No role of primary auditory cortex in such bottom-up segregation

Questions...

- Is IPS involved in active figure-ground segregation? And PAC?
- Functional connectivity between IPS and the auditory system?

For complete details, see: Teki, Chait et al., J Neurosci (2011)

Acknowledgments

Radiology and Physics Group

Wellcome Trust Centre for Neuroimaging

University College London

